Critical heat flux (CHF) is a key design consideration for the systems involving heat dissipation through boiling application. It dictates the maximum limit of performance of heat transfer systems. Abrupt and substantial decrease in heat transfer coefficient is an indirect indication of occurrence of the CHF, which may cause complete burnout of heat transfer surface. Unlike conventional channels, CHF correlations for microchannels are limited and associated with significant variations. In the present paper, effort has been made to develop new CHF models applicable to a frequently occurring scenario of flow boiling in microchannels. The approach combines nondimensional analysis and an energy analysis based bubble growth model at an arbitrary nucleation site. Two separate CHF correlations for refrigerants and water have been developed following a semi-empirical approach. The proposed correlations show good agreement with available experimental data. The mean errors for the refrigerant and water cases are, respectively, found to be 21% and 27% for seven and six relevant datasets. Around 77% data of the refrigerant and 60% data of water are predicted within error band of ±30%. It is also found that influence of a certain energy ratio term (gravity to surface tension, denoted as πE4) is negligible for examined water CHF conditions.

References

References
1.
Moore
,
G. E.
,
1965
, “
Cramming More Components Onto Integrated Circuits
,”
Electronics
,
38
(1), pp.
114
117
.
2.
Miner
,
A.
, and
Ghoshal
,
U.
,
2004
, “
Cooling of High-Power-Density Microdevices Using Liquid Metal Coolants
,”
Appl. Phys. Lett.
,
85
(
3
), pp.
506
508
.
3.
Deng
,
Z. S.
, and
Liu
,
J.
,
2006
, “
Capacity Evaluation of a MEMS Based Micro Cooling Device Using Liquid Metal as Coolant
,” First
IEEE
International Conference on Nano/Micro Engineered and Molecular Systems
, Zhuhai, China, Jan. 18–21, pp. 1311–1315.
4.
Phillips
,
R. J.
,
1988
, “
Microchannel Heat Sinks
,”
Lincoln Lab. J.
,
1
(1), pp.
31
47
.
5.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
.
6.
Boyd
,
R. D.
,
1985
, “
Subcooled Flow Boiling Critical Heat Flux (CHF) and Its Application to Fusion Energy Components. Part I. A Review of Fundamentals of CHF and Related Data Base
,”
Fusion Sci. Technol.
,
7
(
1
), pp.
7
30
.
7.
Rogers
,
C. S.
,
Mills
,
D. M.
,
Lee
,
W. K.
,
Knapp
,
G. S.
,
Holmberg
,
J.
,
Freund
,
A.
,
Wulff
,
M.
,
Rossat
,
M.
,
Hanfland
,
M.
, and
Yamaoka
,
H.
,
1995
, “
Performance of a Liquid-Nitrogen-Cooled, Thin Silicon Crystal Monochromator on a High-Power, Focused Wiggler Synchrotron Beam
,”
Rev. Sci. Instrum.
,
66
(
6
), pp.
3494
3499
.
8.
Kadam
,
S. T.
, and
Kumar
,
R.
,
2014
, “
Twenty First Century Cooling Solution: Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
85
(13–14), pp.
73
92
.
9.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
10.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.
11.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Wong
,
T. N.
,
Toh
,
K. C.
, and
Joshi
,
Y. K.
,
2005
, “
Single-Phase Liquid Cooled Microchannel Heat Sink for Electronic Packages
,”
Appl. Therm. Eng.
,
25
(
10
), pp.
1472
1487
.
12.
Zou
,
Y.
, and
Hrnjak
,
P. S.
,
2014
, “
Single-Phase and Two-Phase Flow Pressure Drop in the Vertical Header of Microchannel Heat Exchanger
,”
Int. J. Refrig.
,
44
, pp.
12
22
.
13.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.
14.
Bhide
,
R. R.
,
Singh
,
S. G.
,
Sridharan
,
A.
,
Duttagupta
,
S. P.
, and
Agrawal
,
A.
,
2009
, “
Pressure Drop and Heat Transfer Characteristics of Boiling Water in Sub-Hundred Micron Channel
,”
Exp. Therm. Fluid Sci.
,
33
(
6
), pp.
963
975
.
15.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2010
, “
Flow Boiling Heat Transfer on Micro Pin Fins Entrenched in a Microchannel
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041007
.
16.
Vafaei
,
S.
, and
Wen
,
D.
,
2014
, “
Critical Heat Flux of Nanofluids Inside a Single Microchannel: Experiments and Correlations
,”
Chem. Eng. Res. Des.
,
92
(
11
), pp.
2339
2351
.
17.
Zou
,
Y.
, and
Hrnjak
,
P. S.
,
2014
, “
Effects of Fluid Properties on Two-Phase Flow and Refrigerant Distribution in the Vertical Header of a Reversible Microchannel Heat Exchanger—Comparing R245fa, R134a, R410A, and R32
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
966
976
.
19.
Lee
,
J.
, and
Mudawar
,
I.
,
2009
, “
Critical Heat Flux for Subcooled Flow Boiling in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3341
3352
.
20.
Kutateladze
,
S. S.
, and
Leontev
,
A. I.
,
1966
, “
Some Applications of the Asymptotic Theory of the Turbulent Boundary Layer
,”
Third International Heat Transfer Conference
, Vol.
3
,
AIChE
,
New York
, pp.
1
6
.
21.
Weisman
,
J.
, and
Pei
,
B. S.
,
1983
, “
Prediction of Critical Heat Flux in Flow Boiling at Low Qualities
,”
Int. J. Heat Mass Transfer
,
26
(
10
), pp.
1463
1477
.
22.
Lee
,
C. H.
, and
Mudawar
,
I.
,
1988
, “
A Mechanistic Critical Heat Flux Model for Subcooled Flow Boiling Based on Local Bulk Flow Conditions
,”
Int. J. Multiphase Flow
,
14
(
6
), pp.
711
728
.
23.
Kivisalu
,
M. T.
,
Gorgitrattanagul
,
P.
, and
Narain
,
A.
,
2014
, “
Results for High Heat-Flux Flow Realizations in Innovative Operations of Milli-Meter Scale Condensers and Boilers
,”
Int. J. Heat Mass Transfer
,
75
, pp.
381
398
.
24.
Shah
,
M. M.
,
2015
, “
Improved General Correlation for CHF in Uniformly Heated Vertical Annuli With Upflow
,”
Heat Transfer Eng.
,
37
(
6
), pp. 557–570.
25.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(10–11), pp.
2045
2059
.
26.
Qi
,
S. L.
,
Zhang
,
P.
,
Wang
,
R. Z.
, and
Xu
,
L. X.
,
2007
, “
Flow Boiling of Liquid Nitrogen in Micro-Tubes—Part II: Heat Transfer Characteristics and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(25–26), pp.
5017
5030
.
27.
Wojtan
,
L.
,
Revellin
,
R.
, and
Thome
,
J. R.
,
2006
, “
Investigation of Saturated Critical Heat Flux in a Single, Uniformly Heated Microchannel
,”
Exp. Therm. Fluid Sci.
,
30
(
8
), pp.
765
774
.
28.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
101
107
.
29.
Kuo
,
C. J.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
,
130
(
7
), p.
072402
.
30.
Kosar
,
A.
,
Kuo
,
C. J.
, and
Peles
,
Y.
,
2005
, “
Boiling Heat Transfer in Rectangular Microchannels With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
,
48
(23–24), pp.
4867
4886
.
31.
Kandlikar
,
S. G.
,
2006
, “
Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
,
30
(
5
), pp.
441
447
.
32.
Miner
,
M.
,
2013
, “
Microchannel Flow Boiling Enhancement Via Cross-Sectional Expansion
,”
Ph.D. thesis
, Arizona State University, Tempe, AZ.
33.
Katto
,
Y.
,
1978
, “
A Generalized Correlation of Critical Heat Flux for the Forced Convection Boiling in Vertical Uniformly Heated Round Tubes
,”
Int. J. Heat Mass Transfer
,
21
(
12
), pp.
1527
1542
.
34.
Bowers
,
M. B.
, and
Mudawar
,
I.
,
1994
, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
321
332
.
35.
Ong
,
C. L.
, and
Thome
,
J. R.
,
2011
, “
Macro-to-Microchannel Transition in Two-Phase Flow—Part 2: Flow Boiling Heat Transfer and Critical Heat Flux
,”
Exp. Therm. Fluid Sci.,
35
(
6
), pp.
873
886
.
36.
Fu
,
B. R.
,
Lee
,
C. Y.
, and
Pan
,
C.
,
2013
, “
The Effect of Aspect Ratio on Flow Boiling Heat Transfer of HFE-7100 in a Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
58
(1–2), pp.
53
61
.
37.
Kosar
,
A.
, and
Peles
,
Y.
,
2007
, “
Critical Heat Flux of R-123 in Silicon-Based Microchannels
,”
ASME J. Heat Transfer
,
129
(
7
), pp.
844
851
.
38.
Kuan
,
W. K.
,
2006
, “
Experimental Study of Flow Boiling Heat Transfer and Critical Heat Flux in Microchannels
,” Ph.D. thesis, Rochester Institute of Technology, Rochester, NY.
39.
Agostini
,
B.
,
Revellin
,
R.
,
Thome
,
J. R.
,
Fabbri
,
M.
,
Michel
,
B.
,
Calmi
,
D.
, and
Kloter
,
U.
,
2008
, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels—Part III: Saturated Critical Heat Flux of R236fa and Two-Phase Pressure Drops
,”
Int. J. Heat Mass Transfer
,
51
(21–22), pp.
5426
5442
.
40.
Park
,
J. E.
,
2008
, “
Critical Heat Flux in Multi-Microchannel Copper Elements With Low Pressure Refrigerants
,” Ph.D. thesis, Ecole Polytechnique Federale De Lausanne, Lausanne, Switzerland.
41.
Mauro
,
A. W.
,
Thome
,
J. R.
,
Toto
,
D.
, and
Vanoli
,
G. P.
,
2010
, “
Saturated Critical Heat Flux in a Multi-Microchannel Heat Sink Fed by a Split Flow System
,”
Exp. Therm. Fluid Sci.
,
34
(
1
), pp.
81
92
.
42.
Basu
,
S.
,
2009
, “
Heat Transfer Characteristics for Flow Boiling of R134a in Horizontal Circular Microtubes
,” M.S. thesis, Rensselaer Polytechnic Institute, Troy, NY.
43.
Roday
,
A. P.
,
2007
, “
Study of the Critical Heat Flux Condition in Microtubes
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
44.
Hsieh
,
S. S.
, and
Lin
,
C. Y.
,
2012
, “
Correlation of Critical Heat Flux and Two-Phase Friction Factor for Subcooled Convective Boiling in Structured Surface Microchannels
,”
Int. J. Heat Mass Transfer
,
55
(1–3), pp.
32
42
.
45.
Roach
,
G. M.
,
Abdel-Khalik
,
S. I.
,
Ghiaasiaan
,
S. M.
,
Dowling
,
M. F.
, and
Jeter
,
S. M.
,
1999
, “
Low-Flow Critical Heat Flux in Heated Microchannels
,”
Nucl. Sci. Eng.
,
131
(3), pp.
411
425
.
46.
Kandlikar
,
S. G.
,
2004
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
8
16
.
47.
Kuan
,
W. K.
, and
Kandlikar
,
S. G.
,
2008
, “
Experimental Study and Model on Critical Heat Flux of Refrigerant-123 and Water in Microchannels
,”
ASME J. Heat Transfer
,
130
(
3
), p.
034503
.
48.
Kandlikar
,
S. G.
,
2010
, “
A Scale Analysis Based Theoretical Force Balance Model for Critical Heat Flux (CHF) During Saturated Flow Boiling in Microchannels and Minichannels
,”
ASME J. Heat Transfer
,
132
(
8
), p.
081501
.
49.
Revellin
,
R.
, and
Thome
,
J. R.
,
2008
, “
A Theoretical Model for the Prediction of the Critical Heat Flux in Heated Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(5–6), pp.
1216
1225
.
50.
Revellin
,
R.
,
Quiben
,
J. M.
,
Bonjour
,
J.
, and
Thome
,
J. R.
,
2008
, “
Effect of Local Hot Spots on the Maximum Dissipation Rates During Flow Boiling in a Microchannel
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
2
), pp.
407
416
.
51.
Kenny
,
T. W.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
,
Wang
,
E.
,
Koo
,
J. M.
,
Jiang
,
L.
,
Pop
,
E.
,
Sinha
,
S.
,
Zhang
,
L.
,
Fogg
,
D.
,
Yao
,
S.
,
Flynn
,
R.
,
Chang
,
C. H.
, and
Hidrovo
,
C. H.
,
2006
, “
Advanced Cooling Technologies For Microprocessors
,”
Int. J. High Speed Electron. Syst.
,
16
(01), pp.
301
313
.
52.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2009
, “
The Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(21–22), pp.
5204
5212
.
53.
Kadam
,
S. T.
,
Baghel
,
K.
, and
Kumar
,
R.
,
2014
, “
Simplified Model for Prediction of Bubble Growth at Nucleation Site in Microchannels
,”
ASME J. Heat Transfer
,
136
(
6
), p.
061502
.
54.
Munson
,
B. R.
,
Okiishi
,
T. H.
,
Huebsch
,
W. W.
, and
Rothmayer
,
A. P.
,
2013
,
Fundamental of Fluid Mechanics
,
7th ed.
,
Wiley
,
Hoboken, NJ
.
55.
Kadam
,
S. T.
, and
Kumar
,
R.
,
2014
, “
Variation of Important Non-Dimensional Numbers During Bubble Growth at Nucleation Site in Microchannels
,”
Fourth Micro and Nano Flows Conference
, London, UK, Sept. 7–10.
56.
Kosar
,
A.
,
Peles
,
Y.
,
Bergles
,
A. E.
, and
Cole
,
G. S.
,
2009
, “
Experimental Investigation of Critical Heat Flux in Microchannels for Flow Field Probes
,”
ASME
Paper No. ICNMM2009-82214.
57.
Kaya
,
A.
,
Ozdemir
,
M. R.
, and
Kosar
,
A.
,
2013
, “
High Mass Flux Flow Boiling and Critical Heat Flux in Microscale
,”
Int. J. Therm. Sci.
,
65
, pp.
70
78
.
58.
Inasaka
,
F.
, and
Nariai
,
H.
,
1992
, “
Critical Heat Flux of Subcooled Flow Boiling for Water in Uniformly Heated Straight Tubes
,”
Fusion Eng. Des.
,
19
(
4
), pp.
329
337
.
59.
Sumith
,
B.
,
Kaminaga
,
F.
, and
Matsumura
,
K.
,
2003
, “
Saturated Flow Boiling of Water in a Vertical Small Diameter Tube
,”
Exp. Therm. Fluid Sci.
,
27
(
7
), pp.
789
801
.
You do not currently have access to this content.