To predict nucleate boiling, a novel semimechanistic wall boiling model is developed within a mixture multiphase flow framework available in ansys fluent. The mass transfer phenomenon is modeled using an evaporation–condensation model, and enhancement of wall-to-fluid heat transfer due to nucleate boiling is captured using a 1D empirical correlation, modified for 3D computational fluid dynamics (CFD) environment; hence this model can be used for a complex-shaped coolant passage. For a series of operating conditions, the present model is rigorously validated against available experimental data in which a 50% volume mixture of aqueous ethylene glycol was used as coolant. Subsequently, this model is applied to study boiling heat transfer for a typical automobile exhaust gas recirculation (EGR) cooler under a typical condition.

References

References
1.
Dhir
,
V. K.
,
Abarjith
,
H. S.
, and
Warrier
,
G. R.
,
2005
, “
From Nano to Micro to Macro Scales in Boiling
,”
Microscale Heat Transfer: Fundamentals and Application
,
S.
Kakaç
, ed.,
Springer
, Dordrecht, The Netherlands, pp.
197
216
.
2.
Dhir
,
V. K.
,
1998
, “
Boiling Heat Transfer
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
365
401
.
3.
Son
,
G.
, and
Dhir
,
V. K.
,
1998
, “
Numerical Simulation of Film Boiling Near Critical Pressures With a Level Set Method
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
183
192
.
4.
Yuan
,
D.
,
Pan
,
L.
, and
Chen
,
D.
,
2010
, “
Numerical Investigation of Bubble Growth in Subcooled Flow Boiling
,”
7th International Conference of Multiphase Flow
, Tampa, FL, pp.
1
10
.
5.
Dhir
,
V. K.
,
2006
, “
Mechanistic Prediction of Nucleate Boiling Heat Transfer-Achievable or a Hopeless Task?
,”
ASME J. Heat Transfer
,
128
(
1
), pp.
1
12
.
6.
Kolev
,
N. I.
,
1995
, “
How Accurately Can We Predict Nucleate Boiling?
,”
Exp. Therm. Fluid Sci.
,
10
(
3
), pp.
370
378
.
7.
Kandlikar
,
S. G.
, and
Bulut
,
M.
,
2003
, “
An Experimental Investigation on Flow Boiling of Ethylene–Glycol/Water Mixture
,”
ASME J. Heat Transfer
,
125
(
2
), pp.
317
325
.
8.
Kandlikar
,
S. G.
,
1998
, “
Heat Transfer Characteristics in Partial Boiling, Fully Developed Boiling, and Significant Void Flow Regions of Subcooled Flow Boiling
,”
ASME J. Heat Transfer
,
120
(
2
), pp.
395
402
.
9.
Prodanovic
,
V.
,
Fraser
,
D.
, and
Salcudean
,
M.
,
2002
, “
On the Transition From Partial to Fully Developed Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4727
4738
.
10.
Mc. Adams
,
W. H.
,
Kennel
,
W. E.
,
Minden
,
C. S.
,
Carl
,
R.
,
Picornell
,
P. M.
, and
Dew
,
J. E.
,
1949
, “
Heat Transfer at High Rates to Water With Surface Boiling
,”
Ind. Eng. Chem.
,
41
(
9
), pp.
1945
1953
.
11.
Chen
,
J. C.
,
1966
, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Des. Dev.
,
5
(
3
), pp.
322
329
.
12.
Shah
,
M. M.
,
1977
, “
A General Correlation for Heat Transfer During Subcooled Boiling in Pipes and Annuli
,”
ASHRAE Trans.
,
83
(
Pt. I
), pp.
205
217
.
13.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquid
,”
Trans. ASME
,
74
, pp.
969
976
.
14.
Robinson
,
K.
,
Hawley
,
J. G.
, and
Campbell
,
N. A. F.
,
2004
, “
Experimental and Modeling Aspects of Flow Boiling Heat Transfer for Application to Internal Combustion Engines
,”
Proc. Inst. Mech. Eng., Part D
,
217
, pp.
877
889
.
15.
Steiner
,
H.
,
Kobor
,
A.
, and
Gebhard
,
L. A.
,
2005
, “
A Wall Heat Transfer Model for Subcooled Boiling Flow
,”
Int. J. Heat Mass Transfer
,
48
(19–20), pp.
4161
4173
.
16.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
,
2003
, “
Wall Heat Flux Partitioning During Subcooled Flow Boiling at Low Pressures
,”
ASME
Paper No. HT2003-47156.
17.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
,
2005
, “
Wall Heat Flux Partitioning During Subcooled Flow Boiling: Part 1—Model Development
,”
ASME J. Heat Transfer
,
127
(
2
), pp.
131
140
.
18.
Kroes
,
J. P.
,
van der Geld
,
C. W. M.
, and
van Velthooven
,
E.
,
2008
, “
Modeling of Nucleate Boiling in Engine Cylinder Head Cooling Ducts
,”
Fifth International Conference on Transport Phenomena in Multiphase Systems
(
HEAT
), Bialystok, Poland, June 30–July 3, pp.
79
84
.
19.
Lee
,
H. S.
,
2009
, “
Heat Transfer Predictions Using the Chen Correlation on Subcooled Flow Boiling in a Standard IC Engine
,”
SAE
Technical Paper No. 2009-01-1530.
20.
Dong
,
F.
,
Fan
,
Q.
,
Cai
,
Y.
, and
Jiang
,
S.
,
2010
, “
Numerical Simulation of Boiling Heat Transfer in Water Jacket of DI Engine
,”
SAE
Technical Paper No. 2010-01-0262.
21.
Kurul
,
N.
, and
Podowski
,
M. Z.
,
1991
, “
On the Modeling of Multidimensional Effects in Boiling Channels
,”
27th National Heat Transfer Conference
, Minneapolis, MN, pp.
30
40
.
22.
Li
,
H.
,
Vasquez
,
S. A.
,
Punekar
,
H.
, and
Muralikrishnan
,
R.
,
2011
, “
Prediction of Boiling and Critical Heat Flux Using an Eulerian Multiphase Boiling Model
,”
ASME
Paper No. IMECE2011-65539.
23.
Tu
,
J. Y.
, and
Yeoh
,
G. H.
,
2002
, “
On Numerical Modelling of Low-Pressure Subcooled Boiling Flows
,”
Int. J. Heat Mass Transfer
,
45
(
6
), pp.
1197
1209
.
24.
Bo
,
T.
,
2004
, “
CFD Homogeneous Mixing Flow Modelling to Simulate Subcooled Nucleate Boiling Flow
,”
SAE
International Paper No. 2004-01-1512.
25.
Srinivasan
,
V.
,
2011
, “
Numerical Simulation of Flow Boiling of Binary Mixtures Using Multi-Fluid Modeling Approach
,”
ASME
Paper No. IMECE2011-63848.
26.
Li
,
Z.
,
Huang
,
R. H.
, and
Wang
,
Z. W.
,
2011
, “
Subcooled Boiling Heat Transfer Modeling for Internal Combustion Engine Applications
,”
Proc. Inst. Mech. Eng., Part D
,
226
, pp.
301
311
.
27.
Yu
,
W.
,
France
,
D. M.
,
Zhao
,
W.
,
Singh
,
D.
, and
Smith
,
R. K.
,
2015
, “
Subcooled Flow Boiling Heat Transfer to Water and Ethylene Glycol/Water Mixtures in a Bottom-Heated Tube
,”
Exp. Heat Transfer
(accepted).
28.
Paz
,
M. C.
,
Conde
,
M.
,
Suáirez
,
E.
, and
Concheiro
,
M.
,
2015
, “
On the Effect of Surface Roughness and Material on the Subcooled Flow Boiling of Water: Experimental Study and Global Correlation
,”
Exp. Therm. Fluid Sci.
,
64
, pp.
114
124
.
29.
Ansys,
2012
, “
ANSYS FLUENT Theory Guide
,” Release 14.5, Ansys Inc., Canonsburg, PA.
30.
Forster
,
H. K.
, and
Zuber
,
N.
,
1955
, “
Dynamics of Vapor Bubbles and Boiling Heat Transfer
,”
AIChE J.
,
1
, pp.
1531
1535
.
31.
De Schepper
,
S. C.
,
Heynderickx
,
G. J.
, and
Marin
,
G. B.
,
2009
, “
Modeling the Evaporation of a Hydrocarbon Feedstock in the Convection Section of a Steam Cracker
,”
Comput. Chem. Eng.
,
33
(
1
), pp.
122
132
.
32.
De Schepper
,
S. C.
,
Heynderickx
,
G. J.
, and
Marin
,
G. B.
,
2008
, “
CFD Modeling of all Gas–Liquid and Vapor–Liquid Flow Regimes Predicted by the Baker Chart
,”
Chem. Eng. J.
,
138
(
1
), pp.
349
357
.
33.
Yakhot
,
V.
,
Thangam
,
S.
,
Gatski
,
T. B.
,
Orszag
,
S. A.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.
34.
Orszag
,
S. A.
,
Yakhot
,
V.
,
Flannery
,
W. S.
,
Boysan
,
F.
,
Choudhury
,
D.
,
Maruzewski
,
J.
, and
Patel
,
B.
,
1993
, “
Renormalization Group Modeling and Turbulence Simulations
,”
International Conference on Near-Wall Turbulent Flows
,
Tempe, AZ, Elsevier
,
The Netherlands
, pp.
1031
1046
.
35.
Robinson
,
K.
,
2001
, “
IC Engine Coolant Heat Transfer Studies
,”
Ph.D. dissertation
, University of Bath, Bath, UK.
36.
Paz
,
C.
,
Porteiro
,
J.
,
Copo
,
A.
, and
Díaz
,
A.
,
2014
, “
Implementation of a Nucleate Boiling Flux Partitioning Model for a CFD Simulation of Compact Heat Exchangers Based on the Local Estimation of Bulk Properties
,”
Adv. Fluid Mech.
,
X
, p.
27
.
37.
Kandlikar
,
S. G.
, and
Spiesman
,
P. H.
,
1998
, “
Effect of Surface Finish on Flow Boiling Heat Transfer
,”
ASME Heat Transfer Div. Publ. HTD
,
361
, pp.
157
163
.
38.
Carrera
,
J.
,
Navarro
,
A.
,
Paz
,
C.
,
Sanchez
,
A.
, and
Porteiro
,
J.
,
2015
, “
Fatigue Life Calculation Under Thermal Multiaxial Stresses in EGR Coolers
,”
SAE Int. J. Mater. Manuf.
,
8
(3), pp.
632
639
.
You do not currently have access to this content.