Continuous, laser-heated boiling heat transfer experiments with silver nanofluids were conducted to identify the nonequilibrium melting behavior of silver nanoparticles in de-ionized (DI) water. Experimental results with transmission electron microscopy (TEM) and dynamic light scattering (DLS) suggest that surface melting of silver nanoparticles (which have a bulk melting point of 961 °C) can occur at ambient pressure when particles are suspended in saturated, and even subcooled (e.g., <100 °C) water due to the localized (volumetric) heat absorption. These findings are supported by calculating a temperature-dependent Hamaker constant of silver nanofluid—i.e., the interaction between interfaces (Ag-melt-water) at the melting temperature. This finding is significant because of the difficulty to identify the melting of silver nanoparticles in water at present, even though it is important to understand such potential melting to use aqueous silver nanofluids in solar applications.

References

References
1.
Barber
,
J.
,
Brutin
,
D.
, and
Tadrist
,
L.
,
2011
, “
A Review on Boiling Heat Transfer Enhancement With Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
16
.
2.
Thomas
,
S.
, and
Sobhan
,
C. B. P.
,
2011
, “
A Review of Experimental Investigations on Thermal Phenomena in Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
21
.
3.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T.
,
Adrian
,
R. J.
, and
Prasher
,
R. S.
,
2009
, “
Vapor Generation in a Nanoparticle Liquid Suspension Using a Focused, Continuous Laser
,”
Appl. Phys. Lett.
,
95
(
16
), p.
161907
.
4.
Taylor
,
R.
,
Coulombe
,
S.
,
Otanicar
,
T.
,
Phelan
,
P.
,
Gunawan
,
A.
,
Lv
,
W.
,
Rosengarten
,
G.
,
Prasher
,
P.
, and
Tyagi
,
H. J.
,
2013
, “
Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids
,”
Appl. Phys.
,
113
(
1
), p.
011301
.
5.
Phelan
,
P.
,
Otanicar
,
T.
,
Taylor
,
R.
, and
Tyagi
,
H.
,
2013
, “
Trends and Opportunities in Solar Thermal Collectors
,”
J. Therm. Sci. Eng. Appl.
,
5
(
2
), pp.
021003
021012
.
6.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
P. T.
,
Adrian
,
R.
, and
Prasher
,
R.
,
2011
, “
Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
11
.
7.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Adrian
,
R.
,
Gunawan
,
A.
, and
Otanicar
,
P. T.
,
2012
, “
Characterization of Light-Induced, Volumetric Steam Generation in Nanofluids
,”
Int. J. Thermal Sci.
,
56
, pp.
1
11
.
8.
Neumann
,
O.
,
Urban
,
A. S.
,
Day
,
J.
,
Lal
,
S.
,
Nordlander
,
P.
, and
Halas
,
N. J.
,
2013
, “
Solar Vapor Generation Enabled by Nanoparticles
,”
ACS Nano
,
7
(
1
), pp.
42
49
.
9.
Fang
,
Z.
,
Zhen
,
Y.-R.
,
Neumann
,
O.
,
Polman
,
A.
,
Garcia de Abajo
,
F. J.
,
Nordlander
,
P.
, and
Halas
,
N. J.
,
2013
, “
Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle
,”
Nano Lett.
,
13
(
4
), pp.
1736
1742
.
10.
Yonezawa
,
T.
,
Arai
,
S.
,
Takeuchi
,
H.
,
Kamino
,
T.
, and
Kuroda
,
K.
,
2012
, “
Preparation of Naked Silver Nanoparticles in a TEM Column and Direct In Situ Observation of Their Structural Changes at High Temperature
,”
Chem. Phys. Lett.
,
537
, pp.
65
68
.
11.
Qin
,
Y.
,
Hu
,
M.
,
Li
,
H.
,
Zhang
,
Z.
, and
Zou
,
Q.
,
2007
, “
Preparation and Field Emission Properties of Carbon Nanotubes Cold Cathode Using Melting Ag Nano-Particles as Binder
,”
Appl. Surf. Sci.
,
253
(
8
), pp.
4021
4024
.
12.
Sun
,
J.
, and
Simon
,
S. L.
,
2007
, “
The Melting Behavior of Aluminum Nanoparticles
,”
Thermochim. Acta.
,
463
(
1–2
), pp.
32
40
.
13.
Nanda
,
K. K.
,
2009
, “
Size-Dependent Melting of Nanoparticles: Hundred Years of Thermodynamic Model
,”
J. Phys.
,
72
, pp.
617
628
.
14.
Drelich
,
J.
,
2013
, “
Nanoparticles in a Liquid: New State of Liquid?
,”
J. Nanomater. Mol. Nanotechnol.
,
2
(
1
), pp.
1
2
.
15.
Chen
,
C. L.
,
Lee
,
J.-G.
,
Arakawa
,
K.
, and
Mori
,
H.
,
2010
, “
In Situ Observations of Crystalline-to-Liquid and Crystalline-to-Gas Transitions of Substrate-Supported Ag Nanoparticles
,”
Appl. Phys. Lett.
,
96
(
25
), p.
253104
.
16.
Pinchuk
,
A. O.
,
2012
, “
Size-Dependent Hamaker Constant for Silver Nanoparticles
,”
J. Phys. Chem. C
,
116
(
37
), pp.
20099
20102
.
17.
French
,
R. H.
,
Cannon
,
R. M.
,
DeNoyer
,
L. K.
, and
Chiang
,
Y.-M.
,
1995
, “
Full Spectral Calculation of Non-Retarded Hamaker Constants for Ceramic Systems From Interband Transition Strengths
,”
Solid State Ionics
,
75
, pp.
13
33
.
18.
Chen
,
X. J.
,
Levi
,
A. C.
, and
Tosatti
,
E.
,
1991
, “
Hamaker Constant Calculations and Surface Melting of Metals
,”
Surf. Sci.
,
251–252
, pp.
641
644
.
19.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
1998
,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
20.
Israelachvili
,
J.
,
2011
,
Intermolecular and Surface Forces
,
3rd ed.
,
Academic
,
Boston, MA
.
21.
Otanicar
,
P. T.
,
Phelan
,
P. E.
,
Prasher
,
S. R.
,
Rosengarten
,
G.
, and
Taylor
,
R. A.
,
2010
, “
Nanofluid-Based Direct Absorption Solar Collector
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
033102
.
22.
Hale
,
G. M.
, and
Query
,
M. R.
,
1973
, “
Optical Constants of Water in the 200 nm to 200 μm Wavelength Region
,”
Appl. Opt.
,
12
(
3
), pp.
555
558
.
23.
Palik
,
E. D.
,
1985
,
Handbook of Optical Constants of Solids
,
Academic
,
Orlando, FL
.
24.
Schiebener
,
P.
,
Straub
,
J.
,
Levelt Sengers
,
J. M. H.
, and
Gallagher
,
J. S.
,
1990
, “
Refractive Index of Water and Steam as Function of Wavelength, Temperature, and Density
,”
J. Phys. Chem. Ref. Data
,
19
(
3
), pp.
677
717
.
25.
Schmid
,
M.
,
Zehnder
,
S.
,
Schwaller
,
P.
,
Neuenschwander
,
B.
,
Zurcher
,
J.
, and
Hunziker
,
U.
,
2013
, “
Measuring the Complex Refractive Index of Metals in the Solid and Liquid State and Its Influence on the Laser Machining
,”
Proc. SPIE
,
8607
, p.
86071I
.
26.
Bruckner
,
M.
,
Schafer
,
J. H.
,
Schiffer
,
C.
, and
Uhlenbusch
,
J.
,
1991
, “
Measurement of the Optical Constants of Solid and Molten Gold and Tin at λ = 10.6 μm
,”
J. Appl. Phys.
,
70
(
3
), pp.
1642
1647
.
27.
Bruckner
,
M.
,
Schafer
,
J. H.
, and
Uhlenbusch
,
J.
,
1989
, “
Ellipsometric Measurement of the Optical Constants of Solid and Molten Aluminum and Copper at λ = 10.6 μm
,”
J. Appl. Phys.
,
66
(
3
), pp.
1326
1332
.
28.
Matula
,
R. A.
,
1979
, “
Electrical Resistivity of Copper, Gold, Palladium, and Silver
,”
J. Phys. Chem. Ref. Data
,
4
, pp.
1257
1297
.
29.
Olson
,
E. A.
,
Efremov
,
N. Y.
,
Zhang
,
M.
,
Zhang
,
Z.
, and
Allen
,
L. H.
,
2005
, “
Size-Dependent Melting of Bi Nanoparticles
,”
J. Appl. Phys.
,
97
(
3
), p.
034304
.
30.
Lee
,
S.
,
Phelan
,
P. E.
,
Dai
,
L.
,
Prasher
,
R.
,
Gunawan
,
A.
, and
Taylor
,
R. A.
,
2014
, “
Experimental Investigation of the Latent Heat of Vaporization in Aqueous Nanofluids
,”
Appl. Phys. Lett.
,
104
(
15
), p.
151908
.
31.
Lee
,
S.
,
Taylor
,
R. A.
,
Dai
,
L.
,
Prasher
,
R.
, and
Phelan
,
P. E.
,
2015
, “
The Effective Latent Heat of Aqueous Nanofluids
,”
Mater. Res. Express
,
2
(
6
), p.
065004
.
32.
Gontard
,
L. C.
,
Ozkaya
,
D.
, and
Dunin-Borkowsk
,
R. E.
,
2011
, “
A Simple Algorithm for Measuring Particle Size Distributions on an Uneven Background From TEM Images
,”
Ultramicroscopy
,
111
(
2
), pp.
101
106
.
33.
Lai
,
W. Y.
,
Vinod
,
S.
,
Phelan
,
P. E.
, and
Prasher
,
R.
,
2009
, “
Convective Heat Transfer for Water-Based Alumina Nanofluids in a Single 1.02-mm Tube
,”
ASME J. Heat Transfer
,
131
(
11
), pp.
112401
112409
.
34.
Lee
,
S.
,
2015
, “
A Study of Latent Heat of Vaporization in Aqueous Nanofluids
,”
Ph.D. thesis
, Arizona State University, Tempe, AZ.
35.
Krishnamurthy
,
S.
,
Bhattacharya
,
P.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2006
, “
Enhanced Mass Transport in Nanofluids
,”
Nano Lett.
,
6
(
3
), pp.
419
423
.
36.
Elimelech
,
M.
,
Gregory
,
J.
,
Jia
,
X.
, and
Willianms
,
R.
,
1998
,
Particle Deposition and Aggregation: Measurement, Modeling and Simulation
,
Butterworth-Heinemann
,
UK
.
37.
Novotny
,
L.
, and
Hecht
,
B.
,
2006
,
Principles of Nano Optics
,
Cambridge University Press
,
New York
.
38.
Tang
,
C.
,
Sung
,
Y.-M.
, and
Junho
,
L.
,
2012
, “
Nonlinear Size-Dependent Melting of the Silica-Encapsulated Silver Nanoparticles
,”
J. Appl. Phys. Lett.
,
100
(
20
), p.
201903
.
39.
Bharadwaj
,
P. S.
,
2012
, “
Silver or Silver Nanoparticle a Safety or a Risk
,”
J. Environ. Res. Dev.
,
7
, pp.
452
456
.
You do not currently have access to this content.