An experimental approach has been used to investigate the influence of a thin layer of carbon nanotubes (CNTs) on the convective heat transfer performance under impinging flow conditions. A successful synthesis of CNT layers was achieved using a thermal catalytic vapor deposition process (TCVD) on silicon sample substrates. Three different structural arrangements, with fully covered, inline, and staggered patterned layers of CNTs, were used to evaluate their heat transfer potential. Systematic surface characterizations were made using scanning electron microscope (SEM) and confocal microscopy. The external surface area ratio of fully covered, staggered, and inline arrangement was obtained to be 4.57, 2.80, and 2.89, respectively. The surface roughness of the fully covered, staggered, and inline arrangement was measured to be (Sa = 0.365 μm, Sq = 0.48 μm), (Sa = 0.969 μm, Sq = 1.291 μm), and (Sa = 1.668 μm, Sq = 1.957 μm), respectively. On average, heat transfer enhancements of 1.4% and − 2.1% were obtained for staggered and inline arrangement of the CNTs layer. This is attributed to the negligible improvement on the effective thermal resistance due to the small area coverage of the CNT layer. In contrast, the fully covered samples enhanced the heat transfer up to 20%. The deposited CNT layer plays a significant role in reducing the effective thermal resistance of the sample, which contributes to the enhancement of heat transfer.

References

References
1.
Al-Rmah
,
M. A.
, and
Mohamad
,
A. A.
,
2015
, “
Simulation of Multi-Internal Confined Impinging Jets Using the Lattice Boltzmann Method
,”
Appl. Therm. Eng.
,
81
, pp.
288
296
.
2.
Benmouhoub
,
D.
, and
Mataoui
,
A.
,
2015
, “
Inclination of an Impinging Jet on a Moving Wall to Control the Stagnation Point Location
,”
Int. J. Therm. Sci.
,
89
, pp.
294
304
.
3.
Fonte
,
C. P.
,
Sultan
,
M. A.
,
Santos
,
R. J.
,
Dias
,
M. M.
, and
Lopes
,
J. C. B.
,
2015
, “
Flow Imbalance and Reynolds Number Impact on Mixing in Confined Impinging Jets
,”
Chem. Eng. J.
,
260
, pp.
316
330
.
4.
Goldstein
,
R. J.
,
Behbahani
,
A. I.
, and
Heppelmann
,
K. K.
,
1986
, “
Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet
,”
Int. J. Heat Mass Transfer
,
29
(
8
), pp.
1227
1235
.
5.
Huang
,
L.
, and
El-Genk
,
M. S.
,
1994
, “
Heat Transfer of an Impinging Jet on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
37
(
13
), pp.
1915
1923
.
6.
San
,
J.-Y.
, and
Chen
,
J.-J.
,
2014
, “
Effects of Jet-to-Jet Spacing and Jet Height on Heat Transfer Characteristics of an Impinging Jet Array
,”
Int. J. Heat Mass Transfer
,
71
, pp.
8
17
.
7.
Wannassi
,
M.
, and
Monnoyer
,
F.
,
2015
, “
Fluid Flow and Convective Heat Transfer of Combined Swirling and Straight Impinging Jet Arrays
,”
Appl. Therm. Eng.
,
78
, pp.
62
73
.
8.
Xu
,
Z.
, and
Hangan
,
H.
,
2008
, “
Scale, Boundary and Inlet Condition Effects on Impinging Jets
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
12
), pp.
2383
2402
.
9.
Yao
,
S.
,
Guo
,
Y.
,
Jiang
,
N.
, and
Liu
,
J.
,
2015
, “
An Experimental Study of a Turbulent Jet Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
83
, pp.
820
832
.
10.
Darabi
,
J.
, and
Ekula
,
K.
,
2003
, “
Development of a Chip-Integrated Micro Cooling Device
,”
Microelectron. J.
,
34
(
11
), pp.
1067
1074
.
11.
Van Den Ende
,
D. A.
,
Van De Wiel
,
H. J.
,
Kusters
,
R. H. L.
,
Sridhar
,
A.
,
Schram
,
J. F. M.
,
Cauwe
,
M.
, and
Van Den Brand
,
J.
,
2014
, “
Mechanical and Electrical Properties of Ultra-Thin Chips and Flexible Electronics Assemblies During Bending
,”
Microelectron. Reliab.
,
54
(
12
), pp.
2860
2870
.
12.
Yu
,
J. J.
,
Yang
,
C. A.
,
Lin
,
Y. F.
,
Hsueh
,
C. H.
, and
Kao
,
C. R.
,
2015
, “
Optimal Ag Addition for the Elimination of Voids in Ni/Snag/Ni Micro Joints for 3D IC Applications
,”
J. Alloys Compd.
,
629
, pp.
16
21
.
13.
Yoo
,
S. K.
,
Lee
,
J. H.
,
Yun
,
S.-S.
,
Gu
,
M. B.
, and
Lee
,
J. H.
,
2007
, “
Fabrication of a Bio-MEMS Based Cell-Chip for Toxicity Monitoring
,”
Biosens. Bioelectron.
,
22
(
8
), pp.
1586
1592
.
14.
Chen
,
X.
,
Cui
,
D.
,
Liu
,
C.
, and
Cai
,
H.
,
2006
, “
Fabrication of Solid Phase Extraction DNA Chips Based on Bio-Micro-Electron-Mechanical System Technology
,”
Chin. J. Anal. Chem.
,
34
(
3
), pp.
433
437
.
15.
Byun
,
I.
,
Yang
,
J.
, and
Park
,
S.
,
2008
, “
Fabrication of a New Micro Bio Chip and Flow Cell Cytometry System Using Bio-MEMS Technology
,”
Microelectron. J.
,
39
(
5
), pp.
717
722
.
16.
Wang
,
L. P.
,
Shao
,
P. G.
,
Van Kan
,
J. A.
,
Bettiol
,
A. A.
, and
Watt
,
F.
,
2009
, “
Development of Elastomeric Lab-on-a-Chip Devices Through Proton Beam Writing (PBW) Based Fabrication Strategies
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
267
(
12–13
), pp.
2312
2316
.
17.
Nguyen
,
N.-T.
,
Shaegh
,
S. A. M.
,
Kashaninejad
,
N.
, and
Phan
,
D.-T.
,
2013
, “
Design, Fabrication and Characterization of Drug Delivery Systems Based on Lab-on-a-Chip Technology
,”
Adv. Drug Delivery Rev.
,
65
(
11–12
), pp.
1403
1419
.
18.
Lee
,
B.-K.
,
Park
,
J. M.
,
Kim
,
D. S.
, and
Kwon
,
T. H.
,
2011
, “
A Simple Fabrication and Integration Technique of Microlens for Microfluidic Lab-on-a-Chip by Overflow of UV Resin Through Holes
,”
Curr. Appl. Phys.
,
11
(
3
), pp.
909
913
.
19.
Guber
,
A. E.
,
Heckele
,
M.
,
Herrmann
,
D.
,
Muslija
,
A.
,
Saile
,
V.
,
Eichhorn
,
L.
,
Gietzelt
,
T.
,
Hoffmann
,
W.
,
Hauser
,
P. C.
,
Tanyanyiwa
,
J.
,
Gerlach
,
A.
,
Gottschlich
,
N.
, and
Knebel
,
G.
,
2004
, “
Microfluidic Lab-on-a-Chip Systems Based on Polymers—Fabrication and Application
,”
Chem. Eng. J.
,
101
(
1–3
), pp.
447
453
.
20.
Suzuki
,
T.
,
Funahashi
,
Y.
,
Yamaguchi
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
,
2008
, “
Fabrication and Characterization of Micro Tubular SOFCs for Advanced Ceramic Reactors
,”
J. Alloys Compd.
,
451
(
1–2
), pp.
632
635
.
21.
Jiang
,
B.
,
Maeder
,
T.
,
Santis-Alvarez
,
A. J.
,
Poulikakos
,
D.
, and
Muralt
,
P.
,
2015
, “
A Low-Temperature Co-Fired Ceramic Micro-Reactor System for High-Efficiency On-Site Hydrogen Production
,”
J. Power Sources
,
273
, pp.
1202
1217
.
22.
Foo
,
H. C.
,
Smith
,
N. W.
, and
Stanley
,
S. M. R.
,
2015
, “
Fabrication of an On-Line Enzyme Micro-Reactor Coupled to Liquid Chromatography–Tandem Mass Spectrometry for the Digestion of Recombinant Human Erythropoietin
,”
Talanta
,
135
, pp.
18
22
.
23.
Verjulio
,
R. W.
,
Santander
,
J.
,
Sabaté
,
N.
,
Esquivel
,
J. P.
,
Torres-Herrero
,
N.
,
Habrioux
,
A.
, and
Alonso-Vante
,
N.
,
2014
, “
Fabrication and Evaluation of a Passive Alkaline Membrane Micro Direct Methanol Fuel Cell
,”
Int. J. Hydrogen Energy
,
39
(
10
), pp.
5406
5413
.
24.
Omosebi
,
A.
, and
Besser
,
R. S.
,
2013
, “
Fabrication and Performance Evaluation of an in-Membrane Micro-Fuel Cell
,”
J. Power Sources
,
242
, pp.
672
676
.
25.
Hsieh
,
S.-S.
, and
Huang
,
C.-F.
,
2013
, “
Design, Fabrication and Performance Test of a Planar Array Module-Type Micro Fuel Cell Stack
,”
Energy Convers. Manage.
,
76
, pp.
971
979
.
26.
Alanís-Navarro
,
J. A.
,
Reyes-Betanzo
,
C.
,
Moreira
,
J.
, and
Sebastian
,
P. J.
,
2013
, “
Fabrication and Characterization of a Micro-Fuel Cell Made of Metallized PMMA
,”
J. Power Sources
,
242
, pp.
1
6
.
27.
Bostanci
,
H.
,
Singh
,
V.
,
Kizito
,
J. P.
,
Rini
,
D. P.
,
Seal
,
S.
, and
Chow
,
L. C.
,
2013
, “
Microscale Surface Modifications for Heat Transfer Enhancement
,”
ACS Appl. Mater. Interfaces
,
5
(
19
), pp.
9572
9578
.
28.
Ndao
,
S.
,
Lee
,
H. J.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2012
, “
Heat Transfer Enhancement From Micro Pin Fins Subjected to an Impinging Jet
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
413
421
.
29.
Gabour
,
L. A.
, and
Lienhard
,
J. H.
,
1994
, “
Wall Roughness Effects on Stagnation-Point Heat Transfer Beneath an Impinging Liquid Jet
,”
ASME J. Heat Transfer
,
116
(
1
), pp.
81
87
.
30.
Sultan
,
K.
,
Degroot
,
C. T.
,
Straatman
,
A. G.
,
Gallego
,
N. C.
, and
Hangan
,
H.
,
2009
, “
Thermal Characterization of Porous Graphitic Foam–Convection in Impinging Flow
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4296
4301
.
31.
Wang
,
Y.
,
Luo
,
Z.
,
Li
,
B.
,
Ho
,
P. S.
,
Yao
,
Z.
,
Shi
,
L.
,
Bryan
,
E. N.
, and
Nemanich
,
R. J.
,
2007
, “
Comparison Study of Catalyst Nanoparticle Formation and Carbon Nanotube Growth: Support Effect
,”
J. Appl. Phys.
,
101
(
12
), p.
124310
.
32.
Bruun
,
H. H.
,
1995
,
Hot-Wire Anemometry: Principles and Signal Analysis
,
Oxford University Press
,
New York
.
33.
Kline
,
S. J.
,
And McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
34.
Hoogendoorn
,
C. J.
,
1977
, “
The Effect of Turbulence on Heat Transfer at a Stagnation Point
,”
Int. J. Heat Mass Transfer
,
20
(
12
), pp.
1333
1338
.
35.
Huang
,
G. C.
,
1963
, “
Investigations of Heat-Transfer Coefficients for Air Flow through Round Jets Impinging Normal to a Heat-Transfer Surface
,”
ASME J. Heat Transfer
,
85
(
3
), pp.
237
243
.
36.
Beitelmal
,
A. H.
,
Saad
,
M. A.
, and
Patel
,
C. D.
,
2000
, “
Effects of Surface Roughness on the Average Heat Transfer of an Impinging Air Jet
,”
Int. Commun. Heat Mass Transfer
,
27
(
1
), pp.
1
12
.
37.
Ekkad
,
S. V.
, and
Kontrovitz
,
D.
,
2002
, “
Jet Impingement Heat Transfer on Dimpled Target Surfaces
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
22
28
.
38.
Ortega-Casanova
,
J.
, and
Granados-Ortiz
,
F. J.
,
2014
, “
Numerical Simulation of the Heat Transfer From a Heated Plate With Surface Variations to an Impinging Jet
,”
Int. J. Heat Mass Transfer
,
76
, pp.
128
143
.
39.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Advances in Heat Transfer
,
Elsevier
,
Karlsruhe, Germany
.
40.
Kim
,
H.-S.
,
Song
,
M.
,
Seo
,
J.-W.
, and
Shin
,
U. S.
,
2014
, “
Preparation of Electrically Conductive Bucky-Sponge Using CNT-Cement: Conductivity Control Using Room Temperature Ionic Liquids
,”
Synth. Met.
,
196
, pp.
92
98
.
41.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
Mceuen
,
P. L.
,
2001
, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
,
87
(
21
), p.
215502
.
You do not currently have access to this content.