In an attempt to investigate the acoustic resonance effect of serpentine passages on internal convection heat transfer, the present work examines a typical high pressure turbine (HPT) blade internal cooling system, based on the geometry of the NASA E3 engine. In order to identify the associated dominant acoustic characteristics, a numerical finite-element method (FEM) simulation (two-step frequency domain analysis) is conducted to solve the Helmholtz equation with and without source terms. Mode shapes of the relevant identified eigenfrequencies (in the 0–20 kHz range) are studied with respect to induced standing sound wave patterns and the local node/antinode distributions. It is observed that despite the complexity of engine geometries, the predominant resonance behavior can be modeled by a same-ended straight duct. Therefore, capturing the physics observed in a generic geometry, the heat transfer ramifications are experimentally investigated in a scaled wind tunnel facility at a representative resonance condition. Focusing on the straight cooling channel's longitudinal eigenmode in the presence of an isolated rib element, the impact of standing sound waves on convective heat transfer and aerodynamic losses are demonstrated by liquid crystal thermometry, local static pressure and sound level measurements. The findings indicate a pronounced heat transfer influence in the rib wake separation region, without a higher pressure drop penalty. This highlights the potential of modulating the aerothermal performance of the system via acoustic resonance mode excitations.

References

References
1.
Schiele
,
R.
, and
Wittig
,
S.
,
2000
, “
Gas Turbine Heat Transfer: Past and Future Challenges
,”
J. Propul. Power
,
16
(
4
), pp.
583
589
.
2.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
London
.
3.
Greenblatt
,
D.
, and
Wygnanski
,
I. J.
,
2000
, “
The Control of Flow Separation by Periodic Excitation
,”
Prog. Aerosp. Sci.
,
36
(
7
), pp.
487
545
.
4.
Rice
,
E. J.
, and
Zaman
,
K. B. M. Q.
,
1987
, “
Control of Shear Flows by Artificial Excitation
,” NASA, Cleveland, OH,
AIAA
Paper No. 87-2722.
5.
Ahuja
,
K. K.
, and
Burrin
,
R. H.
,
1984
, “
Control of Flow Separation by Sound
,”
AIAA
Paper No. 84-2298.
6.
Kaiping
,
P.
,
1983
, “
Unsteady Forced Convective Heat Transfer From a Hot Film in Non-Reversing and Reversing Shear Flow
,”
Int. J. Heat Mass Transfer
,
26
(
4
), pp.
545
556
.
7.
Fujita
,
N.
, and
Tsubouchi
,
T.
,
1982
, “
An Experimental Study of Unsteady Heat Transfer From a Flat Plate to an Oscillating Air Flow
,”
Heat Transfer-Jpn. Res.
,
11
, pp.
31
43
.
8.
Cooper
,
P. I.
,
Sheridan
,
J. C.
, and
Flood
,
G. J.
,
1986
, “
The Effects of Sound on Forced Convection Over a Flat Plate
,”
Int. J. Heat Fluid Flow
,
7
(
1
), pp.
61
68
.
9.
Feiler
,
C. E.
,
1964
, “
Experimental Heat Transfer and Boundary Layer Behavior With 100-CPS Oscillations
,” NASA Technical Note No. 2531.
10.
Park
,
J. S.
,
Taylor
,
M. F.
, and
McEligot
,
D. M.
,
1982
, “
Heat Transfer to Pulsating Turbulent Gas Flow
,”
Seventh International Heat Transfer Conference
, pp.
105
110
http://adsabs.harvard.edu/abs/1982hetr....3..105P.
11.
Purdy
,
K. R.
,
Jackson
,
T. W.
, and
Gorton
,
C. W.
,
1964
, “
Viscous Fluid Flow Under the Influence of a Resonant Acoustic Field
,”
ASME J. Heat Transfer
,
86
(
1
), pp.
97
106
.
12.
Purdy
,
K. R.
,
Jackson
,
T. W.
,
Willoughby
,
D. A.
,
Keith
,
H. G.
, and
Willbanks
,
C. E.
,
1965
,
The Effect of a Resonant Acoustic Field on Laminar Flow in a Circular Tube
, Georgia Institute of Technology, Atlanta, GA.
13.
Jackson
,
T. W.
,
Purdy
,
K. R.
,
Keith
,
H. G.
, and
Rudland
,
R. S.
,
1965
,
Investigations of the Effect of Acoustic Vibrations on Convective Heat Transfer
, Georgia Institute of Technology, Atlanta, GA.
14.
Merkli
,
P.
, and
Thomann
,
H.
,
1975
, “
Thermoacoustic Effects in a Resonance Tube
,”
J. Fluid Mech.
,
70
(
1
), pp.
161
177
.
15.
Jackson
,
T. W.
,
Oliver
,
C. C.
, and
Eastwood
,
I.
,
1961
,
The Effects of Resonant Vibrations on Heat Transfer at High Reynolds Numbers
,
Georgia Institute of Technology
,
Atlanta, GA
.
16.
Jackson
,
T. W.
,
Harrison
,
W. B.
, and
Boteler
,
W. C.
,
1959
, “
Free Convection, Forced Convection, and Acoustic Vibrations in a Constant Temperature Vertical Tube
,”
ASME J. Heat Transfer
,
81
, pp.
68
74
.
17.
Lemich
,
R.
, and
Hwu
,
C. K.
,
1961
, “
The Effect of Acoustic Vibration on Forced Convective Heat Transfer
,”
AIChE J.
,
7
(
1
), pp.
102
106
.
18.
Ahuja
,
K. K.
,
Whipkey
,
R. R.
, and
Jones
,
G. S.
,
1983
, “
Control of Turbulent Boundary Layer Flows by Sound
,”
AIAA
Paper No. 83-0726.
19.
Zaman
,
K. B. M. Q.
,
Bar-Sever
,
A.
, and
Mangalam
,
S. M.
,
1987
, “
Effect of Acoustic Excitation on the Flow Over a Low-Re Airfoil
,”
J. Fluid Mech.
,
182
, pp.
127
148
.
20.
Denos
,
R.
,
Sieverding
,
C. H.
,
Arts
,
T.
,
Brouckaert
,
J. F.
,
Paniagua
,
G.
, and
Michelassi
,
V.
,
1999
, “
Experimental Investigation of the Unsteady Rotor Aerodynamics of a Transonic Turbine Stage
,”
Proc. Inst. Mech. Eng., Part A
,
213
(
4
), pp.
327
338
.
21.
Denos
,
R.
, and
Paniagua
,
G.
,
2005
, “
Effect of Vane-Rotor Interaction on the Unsteady Flow Field Downstream of a Transonic High Pressure Turbine
,”
Proc. Inst. Mech. Eng, Part A
,
219
(
6
), pp.
431
442
.
22.
Collins
,
M.
, and
Povey
,
T.
,
2014
, “
Exploitation of Acoustic Effects in Film Cooling
,”
ASME
Paper No. GT2014-26318.
23.
Halila
,
E. E.
,
Lenahan
,
D. T.
, and
Thomas
,
T. T.
,
1982
, “
High Pressure Turbine Test Hardware Detailed Design Report
,” NASA-Lewis Research Center, Report No. NASA-CR-167955.
24.
Zhang
,
Y. M.
,
Gu
,
W. Z.
, and
Han
,
J. C.
,
1994
, “
Heat Transfer and Friction in Rectangular Channels With Ribbed or Ribbed-Grooved Walls
,”
ASME J. Heat Transfer
,
116
(
1
), pp.
58
65
.
25.
Crocker
,
M. J.
,
2008
,
Handbook of Acoustics
,
Wiley-IEEE
,
Hoboken, NJ
.
26.
Bauer
,
A. B.
,
1977
, “
Impedance Theory and Measurements on a Porous Acoustic Liner
,”
AIAA J. Aircr.
,
14
(
8
), pp.
720
728
.
27.
Cukurel
,
B.
,
Selcan
,
C.
, and
Arts
,
T.
,
2013
, “
Film Cooling Extraction Effects on the Aero-Thermal Characteristics of Rib Roughened Cooling Channel Flow
,”
ASME J. Turbomach.
,
135
(
2
), p.
021016
.
28.
Cukurel
,
B.
,
Selcan
,
C.
, and
Arts
,
T.
,
2012
, “
Color Theory Perception of Steady Wide Band Liquid Crystal Thermometry
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
112
122
.
29.
de Brederode
,
V.
, and
Bradshaw
,
P.
,
1972
, “
Three-Dimensional Flow in Nominally Two-Dimensional Separation Bubbles: 1. Flow Behind a Rearward-Facing Step
,” Imperial College of Science and Technology, Department of Aeronautics, London, UK, Report No. Aero Report 72-19.
30.
Casarsa
,
L.
, and
Arts
,
T.
,
2005
, “
Experimental Investigation of the Aerothermal Performance of a High Blockage Rib-Roughened Cooling Channel
,”
ASME J. Turbomach.
,
127
(
3
), pp.
580
588
.
31.
Sparrow
,
E. M.
,
Kang
,
S. S.
, and
Chuck
,
W.
,
1987
, “
Relation Between the Points of Flow Reattachment and Maximum Heat Transfer for Regions of Flow Separation
,”
Int. J. Heat Mass Transfer
,
30
(
7
), pp.
1237
1246
.
32.
Zukauskas
,
V. A.
, and
Pedisius
,
K. A.
,
1987
, “
Heat Transfer to Reattached Fluid Flow Downstream of a Fence
,”
Wärme Stoffübertragung
,
21
(
2
), pp.
125
131
.
33.
Inaoka
,
K.
,
Kakamura
,
K.
, and
Senda
,
M.
,
2004
, “
Heat Transfer Control of a Backward-Facing Step Flow in a Duct by Means of Miniature Electromagnetic Actuators
,”
Int. J. Heat Fluid Flow
,
25
(
5
), pp.
711
720
.
34.
Bhattacharjee
,
S.
,
Scheelke
,
B.
, and
Troutt
,
T. R.
,
1986
, “
Modification of Vortex Interactions in a Reattaching Separated Flow
,”
AIAA J
,
24
(
4
), pp.
623
629
.
35.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
,
1978
, “
An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces
,”
Int. J. Heat Mass Transfer
,
21
(
8
), pp.
1143
1156
.
36.
Taslim
,
M. E.
, and
Springs
,
S. D.
,
1994
, “
Effect of Turbulator Profile and Spacing on Heat Transfer and Friction in a Channel
,”
AIAA J. Thermophys. Heat Transfer
,
8
(
3
), pp.
555
562
.
37.
Ichiyima
,
K.
,
Yokoyama
,
M.
, and
Shimomura
,
R.
,
1983
, “
Effects of Several Roughness Elements for the Heat Transfer From a Smooth Heated Wall
,”
ASME/JSME Thermal Engineering Joint Conference
, pp.
359
364
.
You do not currently have access to this content.