In this study, we report enhancement in heat capacity of SiO2 nanoparticle dispersions in a molten ternary nitrate salt (NaNO3, KNO3, and Ca(NO3)2) to obtain an effective heat transfer fluid (HTF)/thermal energy storage (TES) for concentrated solar power (CSP) application. The enhanced heat capacity of the molten salt mixture is expected to greatly increase thermal storage density of HTF/TES, and thus the cost of electricity produced by CSP plant can be significantly reduced. A custom two-step method was used to synthesize SiO2 nanoparticle/ternary salt mixture. The nanoparticle concentration of the mixture was fixed at 1% by weight for comparison with the previous studies. A modulated differential scanning calorimeter (MDSC) was employed to measure heat capacity of the mixture, and it was found to be enhanced by ∼19% compared to the pure ternary salt.

References

References
1.
Quaschning
,
V.
, and
Muriel
,
M.
,
2011
, “
Solar Power—Photovoltaics or Solar Thermal Power Plants?
,”
VGB Congress Power Plants 2001
,
Brussels
, Oct. 10–12.
2.
Solana Generating Station
,
2013
, “
Concentrating Solar Power Projects
,” National Renewable Energy Laboratory (NREL), Feb. 23, 2013, retrieved July 22, 2013.
3.
Janz
,
G.
,
Allen
,
C.
,
Bansal
,
N.
,
Murphy
,
R.
, and
Tomkins
,
R.
,
1979
,
Physical Properties Data Compilations Relevant to Energy Storage
,
U.S. Department of Commerce, National Bureau of Standards
,
Washington, DC
.
4.
Choi
,
U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, FED-Vol. 231/MD-Vol. 66,
D. A.
Siginer
and
H. P.
Wang
, eds.,
ASME
,
New York
, pp.
99
105
.
5.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.
6.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2005
, “
Enhanced Thermal Conductivity of TiO2–Water Based Nanofluids
,”
Int. J. Therm. Sci.
,
44
(
4
), pp.
367
373
.
7.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotubes Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), pp.
2252
2254
.
8.
Kang
,
H. U.
,
Kim
,
S. H.
, and
Oh
,
J. M.
,
2006
, “
Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume
,”
Exp. Heat Transfer
,
19
(
3
), pp.
181
191
.
9.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.
10.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Nair
,
A. S.
,
Geoge
,
B.
, and
Pradeep
,
T.
,
2003
, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
,
83
(
14
), pp.
2931
2933
.
11.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.
12.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
.
13.
Kumar
,
D. H.
,
Patel
,
H. E.
,
Kumar
,
V. R. R.
,
Sundararajan
,
T.
,
Pradeep
,
T.
, and
Das
,
S. K.
,
2004
, “
Model for Heat Conduction in Nanofluids
,”
Phys. Rev. Lett.
,
93
(
14
), p.
144301
.
14.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2004
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
(
21
), pp.
4316
4318
.
15.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2006
, “
Brownian-Motion-Based Convective–Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
,
128
(
6
), pp.
588
595
.
16.
Patel
,
H. E.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2008
, “
A Cell Model Approach for Thermal Conductivity of Nanofluids
,”
J. Nanopart. Res.
,
10
(
1
), pp.
87
97
.
17.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Vaerenbergh
,
S. V.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.-H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.
18.
Keblinski
,
P.
,
Prasher
,
R.
, and
Eapen
,
J.
,
2008
, “
Thermal Conductance of Nanofluids: Is the Controversy Over?
,”
J. Nanopart. Res.
,
10
(
7
), pp.
1089
1097
.
19.
Evans
,
W.
,
Prasher
,
R.
,
Fish
,
J.
,
Meakin
,
P.
,
Phelan
,
P.
, and
Keblinski
,
P.
,
2008
, “
Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposite and Colloidal Nanofluids
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1431
1438
.
20.
Namburu
,
P.
,
Kulkarni
,
D.
,
Dandekar
,
A.
, and
Das
,
D.
,
2007
, “
Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids
,”
Micro Nano Lett.
,
2
(
3
), pp.
67
71
.
21.
Zhou
,
S.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
,
92
(
9
), p.
093123
.
22.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Specific Heat Measurement of Three Nanofluids and Development of New Correlations
,”
ASME J. Heat Transfer
,
131
(
7
), p.
071601
.
23.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhanced Specific Heat of Silica Nanofluid
,”
ASME J. Heat Transfer
,
133
(
2
), p.
024501
.
24.
Bridges
,
N.
,
Visser
,
A.
, and
Fox
,
E. B.
,
2011
, “
Potential of Nanoparticle-Enhanced Ionic Liquids (NEILs) as Advanced Heat-Transfer Fluids
,”
Energy Fuels
,
25
(
10
), pp.
4862
4864
.
25.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhancement of Specific Heat Capacity of High-Temperature Silica-Nanofluids Synthesized in Alkali Chloride Salt Eutectics for Solar Thermal-Energy Storage Applications
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1064
1070
.
26.
Shin
,
D.
, and
Banerjee
,
D.
,
2013
, “
Enhanced Specific Heat Capacity of Nanomaterials Synthesized by Dispersing Silica Nanoparticles in Eutectic Mixtures
,”
ASME J. Heat Transfer
,
135
(
3
), p.
032801
.
27.
Dudda
,
B.
, and
Shin
,
D.
,
2013
, “
Effect of Nanoparticle Dispersion on Specific Heat Capacity of a Binary Nitrate Salt Eutectic for Concentrated Solar Power Applications
,”
Int. J. Therm. Sci.
,
69
, pp.
37
42
.
28.
Tiznobaik
,
H.
, and
Shin
,
D.
,
2013
, “
Enhanced Specific Heat Capacity of High-Temperature Molten Salt-Based Nanofluids
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
542
548
.
29.
Tiznobaik
,
H.
, and
Shin
,
D.
,
2013
, “
Experimental Validation of Enhanced Heat Capacity of Ionic Liquid-Based Nanomaterial
,”
Appl. Phys. Lett.
,
102
(
17
), p.
173906
.
30.
Shin
,
D.
,
Tiznobaik
,
H.
, and
Banerjee
,
D.
,
2014
, “
Specific Heat Mechanism of Molten Salt Nanofluids
,”
Appl. Phys. Lett.
,
104
(
12
), p.
121914
.
31.
Shin
,
D.
, and
Banerjee
,
D.
,
2014
, “
Specific Heat of Nanofluids Synthesized by Dispersing Alumina Nanoparticles in Alkali Salt Eutectic
,”
Int. J. Heat Mass Transfer
,
74
, pp.
210
214
.
32.
Betts
,
M.
,
2011
, “
The Effects of Nanoparticle Augmentation of Nitrate Thermal Storage Materials for Use in Concentrating Solar Power Applications
,” M.S. thesis, Texas A&M University, College Station, TX.
33.
Seo
,
J.
, and
Shin
,
D.
,
2014
, “
Enhancement of Specific Heat of Ternary Nitrate (LiNO3-NaNO3-KNO3) Salt by Doping With SiO2 Nanoparticles for Solar Thermal Energy Storage
,”
Micro Nano Lett.
,
9
(
11
), pp.
817
820
.
34.
Andreu-Cabedo
,
P.
,
Mondragon
,
R.
,
Hernandez
,
L.
,
Martinez-Cuenca
,
R.
,
Cabedo
,
L.
, and
Julia
,
J. E.
,
2013
, “
Effect of Nanoparticles on Heat Capacity of Nanofluids Based on Molten Salts as PCM for Thermal Energy Storage
,”
Nanoscale Res. Lett.
,
9
(
1
), pp.
1
11
.
35.
Chieruzzi
,
M.
,
Cerritelli
,
G. F.
,
Miliozzi
,
A.
, and
Kenny
,
J. M.
,
2013
, “
Effect of Nanoparticles on Heat Capacity of Nanofluids Based on Molten Salts as PCM for Thermal Energy Storage
,”
Nanoscale Res. Lett.
,
8
(
1
).
36.
Ho
,
M.
, and
Pan
,
C.
,
2014
, “
Optimal Concentration of Alumina Nanoparticles in Molten Hitec Salt to Maximize Its Specific Heat Capacity
,”
Int. J. Heat Mass Transfer
,
70
, pp.
174
184
.
37.
Zhichao
,
L.
,
Qiang
,
Z.
, and
Gaohui
,
W.
,
2015
, “
Preparation and Enhanced Heat Capacity of Nano-Titania Doped Erythritol as Phase Change Material
,”
Int. J. Heat Mass Transfer
,
80
, pp.
653
659
.
38.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
39.
Salanne
,
M.
, and
Madden
,
P. A.
,
2011
, “
Polarization Effects in Ionic Solids and Melts
,”
Mol. Phys.
,
109
(
19
), pp.
2299
2315
.
40.
Chakraborty
,
B.
,
Wang
,
J.
, and
Eapen
,
J.
,
2013
, “
Multicomponent Diffusion in Molten LiCl-KCl: Dynamical Correlations and Divergent Maxwell-Stefan Diffusivities
,”
Phys. Rev. E
,
87
, p.
052312
.
41.
Malik
,
D.
,
2010
, “
Evaluation of Composite Alumina Nanoparticle and Nitrate Eutectic Materials for Use in Concentrating Solar Power Plants
,” M.S. thesis, Texas A&M University, College Station, TX.
You do not currently have access to this content.