We investigate the entropy generation characteristics of a non-Newtonian fluid in a narrow fluidic channel under electrokinetic forcing, taking the effect of conjugate heat transfer into the analysis. We use power-law model to describe the non-Newtonian fluid rheology, in an effort to capture the essential thermohydrodynamics. We solve the conjugate heat transfer problem in an analytical formalism using the thermal boundary conditions of third kind at the outer surface of the walls. We bring out the alteration in the entropy generation behavior as attributable to the rheology-driven alteration in heat transfer, coupled with nonlinear interactions between viscous dissipation and Joule heating originating from electroosmotic effects. We unveil optimum values of different parameters, including both the geometric as well as thermophysical parameters, which lead to the minimization of the entropy generation rate in the system. We believe that the inferences obtained from the present study may bear far ranging consequences in the design of various cooling and heat removal devices/systems, for potential use in microscale thermal management.

References

References
1.
Anderson
,
J. L.
,
1985
, “
Effect of Nonuniform Zeta Potential on Particle Movement in Electric Fields
,”
J. Colloid Interface Sci.
,
105
(
1
), pp.
45
54
.
2.
Anderson
,
J. L.
, and
Keith Idol
,
W.
,
1985
, “
Electroosmosis Through Pores With Nonuniformly Charged Walls
,”
Chem. Eng. Commun.
,
38
(
3–6
), pp.
93
106
.
3.
Ajdari
,
A.
,
2000
, “
Pumping Liquids Using Asymmetric Electrode Arrays
,”
Phys. Rev. E
,
61
(
1
), pp.
R45
R48
.
4.
Ajdari
,
A.
,
1996
, “
Generation of Transverse Fluid Currents and Forces by an Electric Field: Electro-Osmosis on Charge-Modulated and Undulated Surfaces
,”
Phys. Rev. E
,
53
(
5
), pp.
4996
5005
.
5.
Squires
,
T. M.
, and
Bazant
,
M. Z.
,
2004
, “
Induced-Charge Electro-Osmosis
,”
J. Fluid Mech.
,
509
, pp.
217
252
.
6.
Culbertson
,
C. T.
,
Ramsey
,
R. S.
, and
Ramsey
,
J. M.
,
2000
, “
Electroosmotically Induced Hydraulic Pumping on Microchips: Differential Ion Transport
,”
Anal. Chem.
,
72
(
10
), pp.
2285
2291
.
7.
Das
,
S.
, and
Chakraborty
,
S.
,
2006
, “
Analytical Solutions for Velocity, Temperature and Concentration Distribution in Electroosmotic Microchannel Flows of a Non-Newtonian Bio-Fluid
,”
Anal. Chim. Acta
,
559
(
1
), pp.
15
24
.
8.
Zhao
,
C.
,
Zholkovskij
,
E.
,
Masliyah
,
J. H.
, and
Yang
,
C.
,
2008
, “
Analysis of Electroosmotic Flow of Power-Law Fluids in a Slit Microchannel.
,”
J. Colloid Interface Sci.
,
326
(
2
), pp.
503
510
.
9.
Gravesen
,
P.
,
Branebjerg
,
J.
, and
Jensen
,
O. S.
,
1993
, “
Microfluidics—A Review
,”
J. Micromech. Microeng.
,
3
(
4
), pp.
168
182
.
10.
Nguyen
,
T.
,
Xie
,
Y.
,
de Vreede
,
L. J.
,
van den Berg
,
A.
, and
Eijkel
,
J. C. T.
,
2013
, “
Highly Enhanced Energy Conversion From the Streaming Current by Polymer Addition
,”
Lab Chip
,
13
(
16
), pp.
3210
3216
.
11.
Chen
,
C.-K.
, and
Cho
,
C.-C.
,
2007
, “
Electrokinetically-Driven Flow Mixing in Microchannels With Wavy Surface
,”
J. Colloid Interface Sci.
,
312
(
2
), pp.
470
480
.
12.
Jain
,
A.
, and
Jensen
,
M. K.
,
2007
, “
Analytical Modeling of Electrokinetic Effects on Flow and Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
50
(
25–26
), pp.
5161
5167
.
13.
Becker
,
H.
, and
Gärtner
,
C.
,
2000
, “
Polymer Microfabrication Methods for Microfluidic Analytical Applications
,”
Electrophoresis
,
21
(
1
), pp.
12
26
.
14.
Chen
,
X. Y.
,
Toh
,
K. C.
,
Chai
,
J. C.
, and
Yang
,
C.
,
2004
, “
Developing Pressure-Driven Liquid Flow in Microchannels Under the Electrokinetic Effect
,”
Int. J. Eng. Sci.
,
42
(
5–6
), pp.
609
622
.
15.
Escandón
,
J.
,
Bautista
,
O.
, and
Méndez
,
F.
,
2013
, “
Entropy Generation in Purely Electroosmotic Flows of Non-Newtonian Fluids in a Microchannel
,”
Energy
,
55
, pp.
486
496
.
16.
Sánchez
,
S.
,
Arcos
,
J.
,
Bautista
,
O.
, and
Méndez
,
F.
,
2013
, “
Joule Heating Effect on a Purely Electroosmotic Flow of Non-Newtonian Fluids in a Slit Microchannel
,”
J. Non-Newtonian Fluid Mech.
,
192
, pp.
1
9
.
17.
Maynes
,
D.
, and
Webb
,
B. W.
,
2004
, “
The Effect of Viscous Dissipation in Thermally Fully-Developed Electro-Osmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
5
), pp.
987
999
.
18.
Liechty
,
B. C.
,
Webb
,
B. W.
, and
Maynes
,
R. D.
,
2005
, “
Convective Heat Transfer Characteristics of Electro-Osmotically Generated Flow in Microtubes at High Wall Potential
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2360
2371
.
19.
Dutta
,
P.
,
Horiuchi
,
K.
, and
Yin
,
H.-M.
,
2006
, “
Thermal Characteristics of Mixed Electroosmotic and Pressure-Driven Microflows
,”
Comput. Math. Appl.
,
52
(
5
), pp.
651
670
.
20.
Akgül
,
M. B. B.
, and
Pakdemirli
,
M.
,
2008
, “
Analytical and Numerical Solutions of Electro-Osmotically Driven Flow of a Third Grade Fluid Between Micro-Parallel Plates
,”
Int. J. Non-Linear Mech.
,
43
(
9
), pp.
985
992
.
21.
Matin
,
M. H.
, and
Khan
,
W. A.
,
2013
, “
Entropy Generation Analysis of Heat and Mass Transfer in Mixed Electrokinetically and Pressure Driven Flow Through a Slit Microchannel
,”
Energy
,
56
, pp.
207
217
.
22.
Tang
,
G.
,
Yan
,
D.
,
Yang
,
C.
,
Gong
,
H.
,
Chai
,
C.
, and
Lam
,
Y.
,
2007
, “
Joule Heating and Its Effects on Electrokinetic Transport of Solutes in Rectangular Microchannels
,”
Sens. Actuators, A
,
139
(
1–2
), pp.
221
232
.
23.
Tang
,
G. Y.
,
Yang
,
C.
,
Chai
,
J. C.
, and
Gong
,
H. Q.
,
2004
, “
Joule Heating Effect on Electroosmotic Flow and Mass Species Transport in a Microcapillary
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
215
227
.
24.
Horiuchi
,
K.
, and
Dutta
,
P.
,
2004
, “
Joule Heating Effects in Electroosmotically Driven Microchannel Flows
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3085
3095
.
25.
Mondal
,
M.
,
Misra
,
R. P.
, and
De
,
S.
,
2014
, “
Combined Electroosmotic and Pressure Driven Flow in a Microchannel at High Zeta Potential and Overlapping Electrical Double Layer
,”
Int. J. Therm. Sci.
,
86
, pp.
48
59
.
26.
Dey
,
R.
,
Ghonge
,
T.
, and
Chakraborty
,
S.
,
2013
, “
Steric-Effect-Induced Alteration of Thermal Transport Phenomenon for Mixed Electroosmotic and Pressure Driven Flows Through Narrow Confinements
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
251
262
.
27.
Sadeghi
,
A.
,
Veisi
,
H.
,
Hassan Saidi
,
M.
, and
Asghar Mozafari
,
A.
,
2013
, “
Electroosmotic Flow of Viscoelastic Fluids Through a Slit Microchannel With a Step Change in Wall Temperature
,”
ASME J. Heat Transfer
,
135
(
2
), p.
021706
.
28.
Yavari
,
H.
,
Sadeghi
,
A.
,
Hassan Saidi
,
M.
, and
Chakraborty
,
S.
,
2013
, “
Temperature Rise in Electroosmotic Flow of Typical Non-Newtonian Biofluids Through Rectangular Microchannels
,”
ASME J. Heat Transfer
,
136
(
3
), p.
031702
.
29.
Moghadam
,
A. J.
,
2013
, “
Electrokinetic-Driven Flow and Heat Transfer of a Non-Newtonian Fluid in a Circular Microchannel
,”
ASME J. Heat Transfer
,
135
(
2
), p.
021705
.
30.
Babaie
,
A.
,
Sadeghi
,
A.
, and
Saidi
,
M. H.
,
2011
, “
Combined Electroosmotically and Pressure Driven Flow of Power-Law Fluids in a Slit Microchannel
,”
J. Non-Newtonian Fluid Mech.
,
166
(
14–15
), pp.
792
798
.
31.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
.
32.
Bejan
,
A.
,
1980
, “
Second Law Analysis in Heat Transfer
,”
Energy
,
5
(
8–9
), pp.
720
732
.
33.
Bejan
,
A.
,
1996
,
Entropy-Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
34.
Abbassi
,
H.
,
2007
, “
Entropy Generation Analysis in a Uniformly Heated Microchannel Heat Sink
,”
Energy
,
32
(
10
), pp.
1932
1947
.
35.
Makinde
,
O. D.
,
2008
, “
Entropy-Generation Analysis for Variable-Viscosity Channel Flow With Non-Uniform Wall Temperature
,”
Appl. Energy
,
85
(
5
), pp.
384
393
.
36.
Bejan
,
A.
,
1994
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
Hoboken, NJ
.
37.
Ibáñez
,
G.
, and
Cuevas
,
S.
,
2008
, “
Optimum Wall Conductance Ratio in Magnetoconvective Flow in a Long Vertical Rectangular Duct
,”
Int. J. Therm. Sci.
,
47
(
8
), pp.
1012
1019
.
38.
Ibáñez
,
G.
,
Cuevas
,
S.
, and
López de Haro
,
M.
,
2003
, “
Minimization of Entropy Generation by Asymmetric Convective Cooling
,”
Int. J. Heat Mass Transfer
,
46
(
8
), pp.
1321
1328
.
39.
Cuevas
,
S.
, and
Río
,
J.
,
2001
, “
Dynamic Permeability of Electrically Conducting Fluids Under Magnetic Fields in Annular Ducts
,”
Phys. Rev. E
,
64
(
1
), p.
016313
.
40.
Ibáñez
,
G.
, and
Cuevas
,
S.
,
2010
, “
Entropy Generation Minimization of a MHD (Magnetohydrodynamic) Flow in a Microchannel
,”
Energy
,
35
(
10
), pp.
4149
4155
.
41.
Aydin
,
O.
,
Avci
,
M.
,
Bali
,
T.
, and
Arıcı
,
M. E.
,
2014
, “
Conjugate Heat Transfer in a Duct With an Axially Varying Heat Flux
,”
Int. J. Heat Mass Transfer
,
76
, pp.
385
392
.
42.
Avcı
,
M.
,
Aydın
,
O.
, and
Emin Arıcı
,
M.
,
2012
, “
Conjugate Heat Transfer With Viscous Dissipation in a Microtube
,”
Int. J. Heat Mass Transfer
,
55
(
19–20
), pp.
5302
5308
.
43.
Ibáñez
,
G.
,
López
,
A.
,
Pantoja
,
J.
,
Moreira
,
J.
, and
Reyes
,
J. A.
,
2013
, “
Optimum Slip Flow Based on the Minimization of Entropy Generation in Parallel Plate Microchannels
,”
Energy
,
50
, pp.
143
149
.
44.
Hettiarachchi
,
H. D. M.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and
Minkowycz
,
W. J.
,
2008
, “
Slip-Flow and Conjugate Heat Transfer in Rectangular Microchannels
,”
ASME
Paper No. HT2008-56233.
45.
Hunter
,
R. J.
,
1981
,
Zeta Potential in Colloid Science: Principles and Applications
,
Academic
,
London
.
46.
Masliyah
,
J. H.
, and
Bhattacharjee
,
S.
,
2006
,
Electrokinetic and Colloid Transport Phenomena
,
Wiley
, Hoboken, NJ.
47.
Sheu
,
T. W. H.
,
Kuo
,
S. H.
, and
Lin
,
R. K.
,
2012
, “
Prediction of a Temperature-Dependent Electroosmotically Driven Microchannel Flow With the Joule Heating Effect
,”
Int. J. Numer. Methods Heat Fluid Flow
,
22
(
5
), pp.
554
575
.
48.
Keramati
,
H.
,
Sadeghi
,
A.
,
Saidi
,
M. H.
, and
Chakraborty
,
S.
,
2016
, “
Analytical Solutions for Thermo-Fluidic Transport in Electroosmotic Flow Through Rough Microtubes
,”
Int. J. Heat Mass Transfer
,
92
, pp.
244
251
.
49.
Escandón
,
J. P.
,
Bautista
,
O.
,
Méndez
,
F.
, and
Bautista
,
E.
,
2011
, “
Theoretical Conjugate Heat Transfer Analysis in a Parallel Flat Plate Microchannel Under Electro-Osmotic and Pressure Forces With a Phan-Thien-Tanner Fluid
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1022
1030
.
50.
Sugioka
,
H.
,
2014
, “
Nonlinear Thermokinetic Phenomena Due to the Seebeck Effect
,”
Langmuir
,
30
(
28
), pp.
8621
8630
.
51.
Ghosal
,
S.
,
2006
, “
Electrokinetic Flow and Dispersion in Capillary Electrophoresis
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
309
338
.
52.
Snyder
,
W. T.
,
1964
, “
The Influence of Wall Conductance on Magnetohydrodynamic Channel-Flow Heat Transfer
,”
ASME J. Heat Transfer
,
86
(
4
), pp.
552
556
.
53.
De Groot
,
S. R.
, and
Mazur
,
P.
,
1984
,
Non-Equilibrium Thermodynamics
,
Dover
,
New York
.
54.
Ibáñez
,
G.
,
López
,
A.
, and
Cuevas
,
S.
,
2012
, “
Optimum Wall Thickness Ratio Based on the Minimization of Entropy Generation in a Viscous Flow Between Parallel Plates
,”
Int. Commun. Heat Mass Transfer
,
39
(
5
), pp.
587
592
.
55.
Holman
,
J. P.
,
1990
,
Heat Transfer
,
McGraw-Hill
,
New York
.
56.
Dey
,
R.
,
Chakraborty
,
D.
, and
Chakraborty
,
S.
,
2011
, “
Analytical Solution for Thermally Fully Developed Combined Electroosmotic and Pressure-Driven Flows in Narrow Confinements With Thick Electrical Double Layers
,”
ASME J. Heat Transfer
,
133
(
2
), p.
024503
.
57.
Chakraborty
,
R.
,
Dey
,
R.
, and
Chakraborty
,
S.
,
2013
, “
Thermal Characteristics of Electromagnetohydrodynamic Flows in Narrow Channels With Viscous Dissipation and Joule Heating Under Constant Wall Heat Flux
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1151
1162
.
You do not currently have access to this content.