Heat transfer during condensation of refrigerant blends R404A and R410A flowing through horizontal tubes with 0.76 ≤ D ≤ 9.4 mm at nominal Pr = 0.8–0.9 was investigated. Local heat transfer coefficients were measured for the mass flux range 200 < G < 800 kg m−2 s−1 in small quality increments over the entire vapor–liquid region. Heat transfer coefficients increased with quality and mass flux, while the effect of reduced pressure was not very significant within this range of pressures. The heat transfer coefficients increased with a decrease in diameter. Correlations from the literature were not able to predict the condensation heat transfer coefficient for these fluids at these near-critical pressures over the wide range of tube diameters under consideration. A new flow-regime based model for heat transfer in the wavy, annular, and annular/wavy transition regimes, which predicts 91% of the data within ±25%, is proposed.

References

References
1.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Version 9.0,
NIST
,
Boulder, CO
.
2.
Andresen
,
U. C.
,
Garimella
,
S.
,
Mitra
,
B.
,
Jiang
,
Y.
, and
Fronk
,
B. M.
,
2015
, “
Pressure Drop During Near-Critical-Pressure Condensation of Refrigerant Blends
,”
Int. J. Refrig.
,
59
, pp.
1
13
.
3.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas–Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
.
4.
Breber
,
G.
,
Palen
,
J. W.
, and
Taborek
,
J.
,
1980
, “
Prediction of Horizontal Tubeside Condensation of Pure Components Using Flow Regime Criteria
,”
ASME J. Heat Transfer
,
102
(
3
), pp.
471
476
.
5.
Ewing
,
M. E.
,
Weinandy
,
J. J.
, and
Christensen
,
R. N.
,
1999
, “
Observations of Two-Phase Flow Patterns in a Horizontal Circular Channel
,”
Heat Transfer Eng.
,
20
(
1
), pp.
9
14
.
6.
Dobson
,
M. K.
, and
Chato
,
J. C.
,
1998
, “
Condensation in Smooth Horizontal Tubes
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
193
213
.
7.
Soliman
,
H.
,
1982
, “
On the Annular-to-Wavy Flow Pattern Transition During Condensation Inside Horizontal Tubes
,”
Can. J. Chem. Eng.
,
60
(
4
), pp.
475
481
.
8.
Coleman
,
J. W.
, and
Garimella
,
S.
,
2000
, “
Two-Phase Flow Regime Transitions in Microchannel Tubes: The Effect of Hydraulic Diameter
,”
ASME Heat Transfer Division—2000
, American Society of Mechanical Engineers, New York, pp.
71
83
.
9.
Coleman
,
J. W.
, and
Garimella
,
S.
,
2000
, “
Visualization of Two-Phase Refrigerant Flow During Phase Change
,”
34th National Heat Transfer Conference
, Pittsburgh, PA, Paper No. NHTC2000-12115.
10.
Coleman
,
J. W.
, and
Garimella
,
S.
,
2003
, “
Two-Phase Flow Regimes in Round, Square and Rectangular Tubes During Condensation of Refrigerant R134a
,”
Int. J. Refrig.
,
26
(
1
), pp.
117
128
.
11.
El Hajal
,
J.
,
Thome
,
J. R.
, and
Cavallini
,
A.
,
2003
, “
Condensation in Horizontal Tubes. Part 1: Two-Phase Flow Pattern Map
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3349
3363
.
12.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
1998
, “
Flow Boiling in Horizontal Tubes: Part 1—Development of a Diabatic Two-Phase Flow Pattern Map
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
140
147
.
13.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
,
1970
, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
383
393
.
14.
Ebisu
,
T.
, and
Torikoshi
,
K.
,
1998
, “
Heat Transfer Characteristics and Correlations for R-410A Flowing Inside a Horizontal Smooth Tube
,”
ASHRAE Trans.
,
104
(
2
), pp.
556
561
.
15.
Eckels
,
S. J.
, and
Pate
,
M. B.
,
1991
, “
Experimental Comparison of Evaporation and Condensation Heat Transfer Coefficients for HFC-134a and CFC-12
,”
Int. J. Refrig.
,
14
(
2
), pp.
70
77
.
16.
Han
,
D.-H.
, and
Lee
,
K.-J.
,
2001
, “
Experiments on Condensation Heat Transfer Characteristics Inside a 7 mm Outside Diameter Microfin Tube With R410A
,”
35th National Heat Transfer Conference
, Anaheim, CA.
17.
Kwon
,
J. T.
, and
Kim
,
M. H.
,
2000
, “
Modeling and Experiments of In-Tube Condensation Heat Transfer for R22 and Its Alternative Refrigerant
,”
JSME Int. J., Ser. B
,
43
(
4
), pp.
596
601
.
18.
Matkovic
,
M.
,
Cavallini
,
A.
,
Del Col
,
D.
, and
Rossetto
,
L.
,
2009
, “
Experimental Study on Condensation Heat Transfer Inside a Single Circular Minichannel
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2311
2323
.
19.
Charun
,
H.
,
2012
, “
Thermal and Flow Characteristics of the Condensation of R404A Refrigerant in Pipe Minichannels
,”
Int. J. Heat Mass Transfer,
55
(9–10),
pp.
2692
2701
.
20.
Jiang
,
Y.
,
Mitra
,
B.
,
Garimella
,
S.
, and
Andresen
,
U. C.
,
2007
, “
Measurement of Condensation Heat Transfer Coefficients at Near-Critical Pressures in Refrigerant Blends
,”
ASME J. Heat Transfer
,
129
(
8
), pp.
958
965
.
21.
Kosky
,
P. G.
, and
Staub
,
F. W.
,
1971
, “
Local Condensing Heat Transfer Coefficients in the Annular Flow Regime
,”
AIChE J.
,
17
(
5
), pp.
1037
1043
.
22.
Traviss
,
D. P.
,
Rohsenow
,
W. M.
, and
Baron
,
A. B.
,
1973
, “
Forced-Convection Condensation Inside Tubes: A Heat Transfer Equation for Condenser Design
,”
ASHRAE Trans.
,
79
(Pt.
1
), pp.
157
165
.
23.
Shah
,
M. M.
,
1979
, “
A General Correlation for Heat Transfer During Film Condensation Inside Pipes
,”
Int. J. Heat Mass Transfer
,
22
(
4
), pp.
547
556
.
24.
Chitti
,
M. S.
, and
Anand
,
N. K.
,
1995
, “
An Analytical Model for Local Heat-Transfer Coefficients for Forced Convective Condensation Inside Smooth Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
38
(
4
), pp.
615
627
.
25.
Chitti
,
M.
, and
Anand
,
N.
,
1996
, “
Condensation Heat Transfer Inside Smooth Horizontal Tubes for R-22 and R-32/125 Mixture
,”
HVAC&R Res.
,
2
(
1
), pp.
79
100
.
26.
Kwon
,
J. T.
,
Ahn
,
Y. C.
, and
Kim
,
M. H.
,
2001
, “
A Modeling of In-Tube Condensation Heat Transfer for a Turbulent Annular Film Flow With Liquid Entrainment
,”
Int. J. Multiphase Flow
,
27
(
5
), pp.
911
928
.
27.
Ishii
,
M.
, and
Mishima
,
K.
,
1989
, “
Droplet Entrainment Correlation in Annular Two-Phase Flow
,”
Int. J. Heat Mass Transfer
,
32
(
10
), pp.
1835
1846
.
28.
Guo
,
Z.
, and
Anand
,
N. K.
,
2000
, “
An Analytical Model to Predict Condensation of R-410A in a Horizontal Rectangular Channel
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
613
620
.
29.
Cavallini
,
A.
,
Censi
,
G.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
,
2002
, “
Condensation of Halogenated Refrigerants Inside Smooth Tubes
,”
HVAC&R Res.
,
8
(
4
), pp.
429
451
.
30.
Friedel
,
L.
,
1979
, “
Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two Phase Pipe Flow
,”
European Two Phase Flow Group Meeting, Ispra, Italy, Paper No. E2.
31.
Thome
,
J. R.
,
El Hajal
,
J.
, and
Cavallini
,
A.
,
2003
, “
Condensation in Horizontal Tubes, Part 2: New Heat Transfer Model Based on Flow Regimes
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3365
3387
.
32.
Bandhauer
,
T. M.
,
Agarwal
,
A.
, and
Garimella
,
S.
,
2006
, “
Measurement and Modeling of Condensation Heat Transfer Coefficients in Circular Microchannels
,”
ASME J. Heat Transfer
,
128
(
10
), pp.
1050
1059
.
33.
Agarwal
,
A.
,
Bandhauer
,
T. M.
, and
Garimella
,
S.
,
2010
, “
Measurement and Modeling of Condensation Heat Transfer in Non-Circular Microchannels
,”
Int. J. Refrig.
,
33
(
6
), pp.
1169
1179
.
34.
Garimella
,
S.
, and
Bandhauer
,
T. M.
, “
Measurement of Condensation Heat Transfer Coefficients in Microchannel Tubes
,”
2001 ASME International Mechanical Engineering Congress and Exposition
, American Society of Mechanical Engineers, New York, pp.
243
249
.
35.
Garimella
,
S.
, and
Christensen
,
R. N.
,
1995
, “
Heat Transfer and Pressure Drop Characteristics of Spirally Fluted Annuli: Part II—Heat Transfer
,”
ASME J. Heat Transfer
,
117
(
1
), pp.
61
68
.
36.
Kays
,
W. M.
, and
Leung
,
E. Y.
,
1963
, “
Heat Transfer in Annular Passages: Hydrodynamically Developed Flow With Arbitrarily Prescribed Heat Flux
,”
Int. J. Heat Mass Transfer
,
6
(
7
), pp.
537
557
.
37.
Walker
,
J. E.
,
Whan
,
G. A.
, and
Rothfus
,
R. R.
,
1957
, “
Fluid Friction in Noncircular Ducts
,”
AIChE J.
,
3
(
4
), pp.
484
489
.
38.
Churchill
,
S. W.
,
1977
, “
Comprehensive Correlating Equations for Heat, Mass and Momentum-Transfer in Fully Developed Flow in Smooth Tubes
,”
Ind. Eng. Chem. Fundam.
,
16
(
1
), pp.
109
116
.
39.
Churchill
,
S. W.
,
1977
, “
Friction-Factor Equation Spans All Fluid-Flow Regimes
,”
Chem. Eng.
,
84
(
24
), pp.
91
92
.
40.
Moser
,
K. W.
,
Webb
,
R. L.
, and
Na
,
B.
,
1998
, “
A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes
,”
ASME J. Heat Transfer
,
120
(
2
), pp.
410
417
.
41.
Chato
,
J. C.
,
1962
, “
Laminar Film Condensation Inside Horizontal and Inclined Tubes
,”
ASHRAE J.
,
4
, pp.
52
60
.
42.
Kim
,
N. H.
,
Cho
,
J. P.
,
Kim
,
J. O.
, and
Youn
,
B.
,
2003
, “
Condensation Heat Transfer of R-22 and R-410A in Flat Aluminum Multi-Channel Tubes With or Without Micro-Fins
,”
Int. J. Refrig.
,
26
(
7
), pp.
830
839
.
43.
Webb
,
R. L.
,
1999
, “
Prediction of Condensation and Evaporization in Micro-Fin and Micro-Channel Tubes
,”
Heat Transfer Enhancement of Heat Exchangers
,
S.
Kakac
,
A. E.
Bergles
,
F.
Mayinger
, and
H.
Yuncu
, eds.,
Kluwer Academic Publishers, Dordrecht
,
The Netherlands
, pp.
529
550
.
44.
Baroczy
,
C. J.
,
1965
, “
Correlation of Liquid Fraction in Two-Phase Flow With Application to Liquid Metals
,”
Chem. Eng. Prog. Symp. Ser.
,
61
(
57
), pp.
179
191
.
45.
Cavallini
,
A.
, and
Zecchin
,
R.
,
1974
, “
A Dimensionless Correlation for Heat Transfer in Forced Convection Condensation
,”
5th International Heat Transfer Conference
, Tokyo, Japan, pp.
309
313
.
46.
Jiang
,
Y.
,
2004
, “
Quasi Single-Phase and Condensation Heat Transfer and Pressure Drop of Refrigerant R404A at Supercritical and Near Critical Pressures
,” Ph.D. dissertation, Iowa State University, Ames, IA.
47.
Mitra
,
B.
,
2005
, “
Supercritical Gas Cooling and Condensation of Refrigerant R410A at Near-Critical Pressures
,”
Ph.D. dissertation
, Georgia Institute of Technology, Atlanta, GA.
You do not currently have access to this content.