A new response surface methodology (RSM) based neural network (NN) modeling method is proposed for finned-tube evaporator performance evaluation under dry and wet conditions. Two RSM designs, Box–Behnken design (BBD) and central composite design (CCD), are applied to collect a small but well-designed dataset for NN training, respectively. Compared with additional 7000 sets of test data, for all the evaporator performance including total cooling capacity, sensible heat ratio and pressure drops on both refrigerant and air sides, the standard deviation (SD) and coefficient of determination of trained NNs are less than 2% and higher than 0.998, respectively, under dry conditions while those are less than 4% and greater than 0.974, respectively, under wet conditions. Classic quadratic polynomial response surface models were also included for reference. By comparison, the proposed model achieves higher accuracy. Finally, parametric study based on the trained NNs is conducted. This new method can remarkably downsize the training dataset and mitigate the over-fitting risk of NN.

References

References
1.
Wang
,
C. C.
,
Lin
,
Y. T.
, and
Lee
,
C. J.
,
2000
, “
An Airside Correlation for Plain Fin-and-Tube Heat Exchangers in Wet Conditions
,”
Int. J. Heat Mass Transfer
,
43
(
10
), pp.
1869
1872
.
2.
Kim
,
M.-H.
, and
Bullard
,
C. W.
,
2002
, “
Air-Side Performance of Brazed Aluminum Heat Exchangers Under Dehumidifying Conditions
,”
Int. J. Refrig.
,
25
(
7
), pp.
924
934
.
3.
Wang
,
C.-C.
,
Hsieh
,
Y.-C.
, and
Lin
,
Y.-T.
,
1997
, “
Performance of Plate Finned Tube Heat Exchangers Under Dehumidifying Conditions
,”
ASME J. Heat Transfer
,
119
(
1
), pp.
109
117
.
4.
Ma
,
X.
,
Ding
,
G.
,
Zhang
,
Y.
, and
Wang
,
K.
,
2007
, “
Airside Heat Transfer and Friction Characteristics for Enhanced Fin-and-Tube Heat Exchanger With Hydrophilic Coating Under Wet Conditions
,”
Int. J. Refrig.
,
30
(
7
), pp.
1153
1167
.
5.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
219
228
.
6.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
,
McGraw-Hill
,
New York
.
7.
DeJong
,
N. C.
, and
Jacobi
,
A.
,
1999
, “
Flow, Heat Transfer, and Pressure Drop Interactions in Louvered-Fin Arrays
,” Ph.D. thesis, Air Conditioning and Refrigeration Center, College of Engineering, University of Illinois at Urbana-Champaign, Champaign, IL.
8.
Garcia-Cascales
,
J. R.
,
Vera-Garcia
,
F.
,
Corberan-Salvador
,
J. M.
,
Gonzalvez-Macia
,
J.
, and
Fuentes-Diaz
,
D.
,
2007
, “
Assessment of Boiling Heat Transfer Correlations in the Modelling of Fin and Tube Heat Exchangers
,”
Int. J. Refrig.
,
30
(
6
), pp.
1004
1017
.
9.
Jiang
,
H.
,
Aute
,
V.
, and
Radermacher
,
R.
,
2006
, “
Coil Designer: A General-Purpose Simulation and Design Tool for Air-to-Refrigerant Heat Exchangers
,”
Int. J. Refrig.
,
29
(
4
), pp.
601
610
.
10.
Liu
,
J.
,
Wei
,
W. J.
,
Ding
,
G. L.
,
Zhang
,
C. L.
,
Fukaya
,
M.
,
Wang
,
K.
, and
Inagaki
,
T.
,
2004
, “
A General Steady State Mathematical Model for Fin-and-Tube Heat Exchanger Based on Graph Theory
,”
Int. J. Refrig.
,
27
(
8
), pp.
965
973
.
11.
Singh
,
V.
,
Aute
,
V.
, and
Radermacher
,
R.
,
2008
, “
Numerical Approach for Modeling Air-to-Refrigerant Fin-and-Tube Heat Exchanger With Tube-to-Tube Heat Transfer
,”
Int. J. Refrig.
,
31
(
8
), pp.
1414
1425
.
12.
Yang
,
K. T.
,
2008
, “
Artificial Neural Networks (ANNs): A New Paradigm for Thermal Science and Engineering
,”
ASME J. Heat Transfer
,
130
(
9
), p.
093001
.
13.
Mohanraj
,
M.
,
Jayaraj
,
S.
, and
Muraleedharan
,
C.
,
2012
, “
Applications of Artificial Neural Networks for Refrigeration, Air-Conditioning and Heat Pump Systems—A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
2
), pp.
1340
1358
.
14.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks are Universal Approximators
,”
Neural Networks
,
2
(
5
), pp.
359
366
.
15.
Zhao
,
L. X.
,
Yang
,
L.
, and
Zhang
,
C. L.
,
2010
, “
Network Modeling of Fin-and-Tube Evaporator Performance Under Dry and Wet Conditions
,”
ASME J. Heat Transfer
,
132
(
7
), p.
074502
.
16.
Pacheco-Vega
,
A.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
,
2001
, “
Neural Network Analysis of Fin-Tube Refrigerating Heat Exchanger With Limited Experimental Data
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
763
770
.
17.
Sha
,
W.
,
2007
, “
Comment on “Artificial Neural Network Based Modeling of Heated Catalytic Converter Performance” by M. Ali Akcayol and Can Cinar [Applied Thermal Engineering 25 (2005) 2341]
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
688
689
.
18.
Betiku
,
E.
,
Omilakin
,
O. R.
,
Ajala
,
S. O.
,
Okeleye
,
A. A.
,
Taiwo
,
A. E.
, and
Solomon
,
B. O.
,
2014
, “
Mathematical Modeling and Process Parameters Optimization Studies by Artificial Neural Network and Response Surface Methodology: A Case of Non-Edible Neem (Azadirachta indica) Seed Oil Biodiesel Synthesis
,”
Energy
,
72
, pp.
266
273
.
19.
Montgomery
,
D. C.
,
2013
,
Design and Analysis of Experiments
,
Wiley
,
Hoboken, NJ
.
20.
MATLAB,
2012
, The MathWorks Inc., Natick MA.
You do not currently have access to this content.