An experimental investigation of the effects of droplet diameters and fluid properties on the Leidenfrost temperature of polished and nano/microstructured surfaces has been carried out. Leidenfrost experiments were conducted on a stainless steel 304 polished surface and a stainless steel surface which was processed by a femtosecond laser to form above surface growth (ASG) nano/microstructures. Surface preparation resulted in a root mean square roughness (Rrms) of 4.8 μm and 0.04 μm on the laser processed and polished surfaces, respectively. To determine the Leidenfrost temperatures, the droplet lifetime method was employed using deionized (DI) water and HFE 7300DL. A precision dropper was used to vary the size of DI water droplets from 1.5 to 4 mm. The Leidenfrost temperature was shown to display increases as high as 100 °C on the processed surface over the range of droplet sizes, as opposed to a 40 °C increase on the polished surface. Average increases of the Leidenfrost temperature between polished and processed samples were as high as 200 °C. The experiment was repeated with HFE 7300DL; however, with no noticeable changes of the Leidenfrost temperatures with droplet size whether on the polished or the processed surface. The difference in the Leidenfrost behavior between DI water and HFE 7300DL and among the various droplet sizes can be attributed to the nature of the force balance and flow hydrodynamics at a temperature slightly below the Leidenfrost point (LFP).

References

References
1.
Zhang
,
S.
, and
Gogos
,
G.
,
1991
, “
Film Evaporation of a Spherical Droplet Over a Hot Surface: Fluid Mechanics and Heat/Mass Transfer Analysis
,”
J. Fluid Mech.
,
222
, pp.
543
563
.
2.
Quéré
,
D.
,
2013
, “
Leidenfrost Dynamics
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
197
215
.
3.
Avedisian
,
C. T.
, and
Fatehi
,
M.
,
1988
, “
An Experimental Study of the Leidenfrost Evaporation Characteristics of Emulsified Liquid Droplet
,”
Int. J. Heat Mass Transfer
,
31
(
8
), pp.
1587
1603
.
4.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
2002
, “
A Cavity Activation and Bubble Growth Model of the Leidenfrost Point
,”
ASME J. Heat Transfer
,
124
(
5
), pp.
864
874
.
5.
Biance
,
A.-L.
,
Clanet
,
C.
, and
Quéré
,
D.
,
2003
, “
Leidenfrost Drops
,”
Phys. Fluids
,
15
(
6
), pp.
1632
1637
.
6.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
1999
, “
The Leidenfrost Point: Experimental Study and Assessment of Existing Models
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
894
903
.
7.
Tamura
,
Z.
, and
Tanasawa
,
Y.
,
1958
, “
Evaporation and Combustion of a Drop Contacting With a Hot Surface
,”
Seventh International Symposium on Combustion
, Vol.
7
, pp.
509
522
.
8.
Baumeister
,
K. J.
,
Henry
,
R. E.
, and
Simon
,
F. F.
,
1970
, “
Role of the Surface in the Measurement of the Leidenfrost Temperature
,”
Augmentation of Convective Heat and Mass Transfer
,
A. E.
Bergles
, and
R. L.
Webb
, eds.,
ASME
,
New York
, pp.
91
101
.
9.
Emmerson
,
G. S.
,
1975
, “
The Effect of Pressure and Surface Material on the Leidenfrost Point of Discrete Drops of Water
,”
Int. J. Heat Mass Transfer
,
18
(
3
), pp.
381
386
.
10.
Xiong
,
T. Y.
, and
Yuen
,
M. C.
,
1991
, “
Evaporation of a Liquid Droplet on a Hot Plate
,”
Int. J. Heat Mass Transfer
,
34
(
7
), pp.
1881
1894
.
11.
Nagai
,
N.
, and
Nishio
,
S.
,
1996
, “
Leidenfrost Temperature on an Extremely Smooth Surface
,”
Exp. Therm. Fluid Sci.
,
12
(
3
), pp.
373
379
.
12.
Kim
,
H.
,
Truong
,
B.
,
Buongiorno
,
J.
, and
Hu
,
L.-W.
,
2011
, “
On the Effect of Surface Roughness Height, Wettability, and Nanoporosity on Leidenfrost Phenomena
,”
Appl. Phys. Lett.
,
98
(
8
), p.
083121
.
13.
Vakarelski
,
I. U.
,
Patankar
,
N. A.
,
Marston
,
J. O.
,
Chan
,
D. Y. C.
, and
Thoroddsen
,
S. T.
,
2012
, “
Stabilization of Leidenfrost Vapour Layer by Textured Superhydrophobic Surfaces
,”
Nature
,
489
(
7415
), pp.
274
277
.
14.
Hughes
,
F.
,
2009
, “
The Evaporation of Drops From Super-Heated Nano-Engineered Surfaces
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
15.
Takata
,
Y.
,
Hidaka
,
S.
,
Yamashita
,
A.
, and
Yamamoto
,
H.
,
2004
, “
Evaporation of Water Drop on a Plasma-Irradiated Hydrophilic Surface
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
320
328
.
16.
Munoz
,
R. A.
, and
Beving
,
D.
,
2005
, “
Hydrophilic Zeolite Coatings for Improved Heat Transfer
,”
Ind. Eng. Chem. Res.
,
44
(
12
), pp.
4310
4315
.
17.
Huang
,
C. K.
, and
Carey
,
V. P.
,
2007
, “
The Effects of Dissolved Salt on the Leidenfrost Transition
,”
Int. J. Heat Mass Transfer
,
50
(
1
), pp.
269
282
.
18.
Bizi-Bandoki
,
P.
,
Benayoun
,
S.
,
Valette
,
S.
,
Beaugiraud
,
B.
, and
Audouard
,
E.
,
2011
, “
Modifications of Roughness and Wettability Properties of Metals Induced by Femtosecond Laser Treatment
,”
Appl. Surf. Sci.
,
257
(
12
), pp.
5213
5218
.
19.
Wang
,
Z. K.
,
Zheng
,
H. Y.
, and
Xia
,
H. M.
,
2011
, “
Femtosecond Laser-Induced Modification of Surface Wettability of PMMA for Fluid Separation in Microchannels
,”
Microfluid. Nanofluid.
,
10
(
1
), pp.
225
229
.
20.
Avedisian
,
C. T.
, and
Koplik
,
J.
,
1987
, “
Leidenfrost Boiling of Methanol Droplets on Hot Porous/Ceramic Surfaces
,”
Int. J. Heat Mass Transfer
,
30
(
2
), pp.
379
393
.
21.
Chandra
,
S.
, and
Avedisian
,
C. T.
,
1992
, “
Observations of Droplet Impingement on a Ceramic Porous Surface
,”
Int. J. Heat Mass Transfer
,
35
(
10
), pp.
2377
2388
.
22.
Kwon
,
H.
,
Bird
,
J. C.
, and
Varanasi
,
K. K.
,
2013
, “
Increasing Leidenfrost Point Using Micro–Nano Hierarchical Surface Structures
,”
Appl. Phys. Lett.
,
103
(
20
), p.
201601
.
23.
Kruse
,
C.
,
Anderson
,
T.
,
Wilson
,
C.
,
Zuhlke
,
C.
,
Alexander
,
D.
,
Gogos
,
G.
, and
Ndao
,
S.
,
2013
, “
Extraordinary Shifts of the Leidenfrost Temperature From Multiscale Micro/Nanostructured Surfaces
,”
Langmuir
,
29
(
31
), pp.
9798
9806
.
24.
Arnaldo del Cerro
,
D.
,
Marín
,
A. G.
,
Römer
,
G. R. B. E.
,
Pathiraj
,
B.
,
Lohse
,
D.
, and
Huis in't Veld
,
A. J.
,
2012
, “
Leidenfrost Point Reduction on Micropatterned Metallic Surfaces
,”
Langmuir
,
28
(
42
), pp.
15106
15110
.
25.
Manzello
,
S. L.
, and
Yang
,
J. C.
,
2002
, “
An Experimental Study of High Weber Number Impact of Methoxy-Nonafluorobutane C4F9OCH3(HFE-7100) and n-Heptane Droplets on a Heated Solid Surface
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3961
3971
.
26.
Burton
,
J. C.
,
Sharpe
,
A. L.
,
van der Veen
,
R. C. A.
,
Franco
,
A.
, and
Nagel
,
S. R.
,
2012
, “
Geometry of the Vapor Layer Under a Leidenfrost Drop
,”
Phys. Rev. Lett.
,
109
(
7
), p.
074301
.
27.
Caswell
,
T. A.
,
2014
, “
Dynamics of the Vapor Layer Below a Leidenfrost Drop
,”
Phys. Rev. E
,
90
(
1
), pp.
1
10
28.
Gottfried
,
B. S.
,
Lee
,
C. J.
, and
Bell
,
K. J.
,
1966
, “
The Leidenfrost Phenomenon: Film Boiling of Liquid Droplets on a Flat Plate
,”
Int. J. Heat Mass Transfer
,
9
(
11
), pp.
1167
1188
.
29.
Patel
,
B. M.
, and
Bell
,
K. J.
,
1965
, “
The Leidenfrost Phenomenon for Extended Liquid Masses
,” Ph.D. thesis, Oklahoma State University, Stillwater, OK.
30.
Nishio
,
S.
, and
Hirata
,
M.
,
1978
, “
Direct Contact Phenomenon Between a Liquid Droplet and High Temperature Solid Surface
,”
Sixth International Heat Transfer Conference
, Vol.
1
, pp.
245
250
.
31.
Zuhlke
,
C. A.
,
Anderson
,
T. P.
, and
Alexander
,
D. R.
,
2013
, “
Formation of Multiscale Surface Structures on Nickel Via Above Surface Growth and Below Surface Growth Mechanisms Using Femtosecond Laser Pulses
,”
Opt. Express
,
21
(
7
), pp.
8460
8473
.
32.
Zuhlke
,
C. A.
,
Anderson
,
T. P.
, and
Alexander
,
D. R.
,
2013
, “
Comparison of the Structural and Chemical Composition of Two Unique Micro/Nanostructures Produced by Femtosecond Laser Interactions on Nickel
,”
Appl. Phys. Lett.
,
103
(
12
), p.
121603
.
33.
Vorobyev
,
A. Y.
, and
Guo
,
C.
,
2013
, “
Direct Femtosecond Laser Surface Nano/Microstructuring and Its Applications
,”
Laser Photon. Rev.
,
7
(
3
), pp.
385
407
.
34.
Nayak
,
B. K.
,
Gupta
,
M. C.
, and
Kolasinski
,
K. W.
,
2008
, “
Formation of Nano-Textured Conical Microstructures in Titanium Metal Surface by Femtosecond Laser Irradiation
,”
Appl. Phys. A
,
90
(
3
), pp.
399
402
.
35.
Tsibidis
,
G. D.
,
Stratakis
,
E.
,
Loukakos
,
P. A.
, and
Fotakis
,
C.
,
2014
, “
Controlled Ultrashort-Pulse Laser-Induced Ripple Formation on Semiconductors
,”
Appl. Phys. A
,
114
(
1
), pp.
57
68
.
36.
Kietzig
,
A.-M.
,
Hatzikiriakos
,
S. G.
, and
Englezos
,
P.
,
2009
, “
Patterned Superhydrophobic Metallic Surfaces
,”
Langmuir
,
25
(
8
), pp.
4821
4827
.
You do not currently have access to this content.