A series expansion and an approximation have been derived for the temperature in the general case of transient heat conduction in two thin layers between two semi-infinite media at different uniform initial temperatures. The temperature accuracy and thermal effusivity measurement accuracy have been mapped to establish a window of operation for direct thermal effusivity measurement by the modified transient plane source (MTPS) method. The presented temperature series enables quick thermal analysis of thermally thick and semithick samples without factory correction/calibration.

References

References
1.
Mulholland
,
G. P.
, and
Cobble
,
M. H.
,
1972
, “
Diffusion Through Composite Media
,”
Int. J. Heat Mass Transfer
,
15
(
1
), pp.
147
160
.
2.
Mikhailov
,
M. D.
, and
Özişik
,
M. N.
,
1984
,
Unified Analysis and Solutions of Heat and Mass Diffusion
,
Wiley
,
New York
, Chap. 9.
3.
Mikhailov
,
M. D.
,
Özişik
,
M. N.
, and
Vulchanov
,
N. L.
,
1983
, “
Diffusion in Composite Layers With Automatic Solution of the Eigenvalue Problem
,”
Int. J. Heat Mass Transfer
,
26
(
8
), pp.
1131
1141
.
4.
van der Tempel
,
L.
,
Potze
,
W.
, and
Lammers
,
J. H.
,
1999
, “
Transient Heat Conduction in a Layer Between Two Semi-Infinite Media
,”
33rd National Heat Transfer Conference
,
Albuquerque, NM
, Paper No. HTD99-100.
5.
van der Tempel
,
L.
,
2006
, “
Deformation of Polycarbonate Optical Disks by Water Sorption and Ageing
,”
Precision Injection Molding: Process, Materials and Applications
,
J.
Greener
and
R.
Wimberger-Friedl
, eds.,
Carl Hanser Verlag
, Munich, pp.
153
168
.
6.
van der Tempel
,
L.
,
Melis
,
G. P.
, and
Brandsma
,
T. E. C.
,
2000
, “
Thermal Conductivity of Glass: I. Measurement by Glass-Metal Contact
,”
Glass Phys. Chem.
,
26
(
6
), pp.
606
611
.
7.
Emanuel
,
M.
,
2005
, “
Effusivity Sensor Package (ESP) System for Process Monitoring and Control
,”
28th International Thermal Conductivity Conference
,
DEStech Publications
,
Lancaster, PA
, pp.
256
268
.
8.
van den Brink
,
J. P.
,
1996
, “
Physical Properties of Glasses Around the Transition Temperature
,” Philips-TNO Seminar, Lecture 7, Eindhoven, The Netherlands.
9.
van der Tempel
,
L.
,
2002
, “
Thermal Conductivity of Glass—II: Empirical Model
,”
Glass Phys. Chem.
,
28
(
3
), pp.
147
152
.
10.
Valko
,
P. P.
, and
Abate
,
J.
,
2004
, “
Comparison of Sequence Accelerators for the Gaver Method of Numerical Laplace Transform Inversion
,”
Comput. Math. Appl.
,
48
, pp.
629
636
.
11.
Fleszar
,
M. F.
,
2003
, “
Thermal Effusivity as a Non-Destructive Method to Characterize Thin Films
,” U.S. Army Armament Research, Development and Engineering Center, Watervliet, NY,
Technical Report No. ARCCB-TR-03014
.http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA419354
12.
Hulstrom
,
L. C.
,
Tye
,
R. P.
, and
Smith
,
S. E.
,
1988
, “
Round-Robin Testing of Thermal Conductivity Reference Materials
,”
Therm. Conduct.
,
19
, S. W. Yarbrough, ed., Plenum Press, New York, pp.
199
211
.
13.
Prudnikov
,
A. P.
,
Brychkov
,
Y. A.
, and
Marichev
,
O. I.
,
1992
,
Integrals and Series
(Inverse Laplace Transforms), Vol.
5
,
Gordon & Breach Science Publishers
,
Philadelphia, PA
, pp.
55
56
.
14.
Lether
,
F. G.
,
1990
, “
An Elementary Approximation for exp(x2) erfc(x)
,”
J. Quant. Spectrosc. Radiat. Transfer
,
43
(
6
), pp.
511
513
.
15.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1972
,
Handbook of Mathematical Functions
,
Dover Publications
, New York.
You do not currently have access to this content.