The problem of a hot torus left to cool in a medium of known temperature is studied. We write the governing equation in toroidal coordinates and expand the temperature in terms of a series in the angular direction. The resulting modes in the radial direction are numerically obtained. We consider both isothermal and convective boundary conditions and study the effect of Biot number and aspect ratio on the heat transfer rate.

References

References
1.
Wiesche
,
S. A.
,
2001
, “
Transient Heat Conduction in a Torus: Theory and Application
,”
HMT
,
38
(
1–2
), pp.
85
92
.
2.
Ozisik
,
M. N.
,
1989
,
Boundary Value Problems of Heat Conduction
,
Dover
,
Dutchess County, New York
.
3.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1986
,
Conduction of Heat in Solids
,
2nd ed.
,
Clarendon Press
,
Oxford
.
4.
Kakac
,
S.
, and
Yener
,
Y.
,
1985
,
Heat Conduction
,
Hemisphere Publishing
,
Washington, DC
.
5.
Andrews
,
M.
,
2006
, “
Alternative Separation of Laplace's Equation in Toroidal Coordinates and Its Application to Electrostatics
,”
J. Electrost.
,
64
(
10
), pp.
664
672
.
6.
Alassar
,
R. S.
,
1999
, “
Heat Conduction From Spheroids
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
497
499
.
7.
Alassar
,
R. S.
, and
Abushoshah
,
M. A.
,
2013
, “
Heat Conduction From Donuts
,”
Int. J. Mater. Mech. Manuf.
,
1
(
2
), pp.
126
130
.
8.
Moon
,
P.
, and
Spencer
,
D. E.
,
1961
,
Field Theory for Engineers
,
Van Nostrand
,
Princeton, NJ
.
9.
Morse
,
P. M.
, and
Feshbach
,
H.
,
1953
,
Methods of Theoretical Physics, Part I
,
McGraw-Hill
,
New York
.
10.
Arfken
,
G.
,
1985
,
Mathematical Methods for Physicists
,
3rd ed.
,
Academic Press
,
Orlando, FL
.
You do not currently have access to this content.