The aim of this study is to investigate the influence of the surface wettability on the dynamic behavior of a water droplet impacting onto a heated surface made of stainless steel grade 304 (Sus304). The surface wettability is controlled by exposing the surfaces to plasma irradiation for different time periods (namely, 0.0, 10, 60, and 120 s). The experimental runs were carried out by spraying water droplets on the heated surface where the droplet diameter and velocity were independently controlled. The droplet behavior during the collision with the hot surface has been recorded with a high-speed video camera. By analyzing the experimental results, the effects of surface wettability, contact angle between impacting droplet and the hot surface, droplet velocity, droplet size, and surface superheat on the dynamic behavior of the water droplet impacting on the hot surface were investigated. Empirical correlations are presented describing the hydrodynamic characteristics of an individual droplet impinging onto the heated hydrophilic surfaces and concealing the affecting parameters in such process.

References

References
1.
Marengo
,
M.
,
Antonini
,
C.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2011
, “
Drop Collisions With Simple and Complex Surfaces
,”
Curr. Opin. Colloid Interface Sci.
,
16
(
4
), pp.
292
302
.
2.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
2007
, “
Transition Boiling Heat Transfer of Droplet Streams and Sprays
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1605
1610
.
3.
Rein
,
M.
,
2002
,
Droplet–Surface Interactions
,
Springer
,
New York
.
4.
Yarin
,
A. L.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing…
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
159
192
.
5.
Rein
,
M.
,
1993
, “
Phenomena of Liquid Drop Impact on Solid and Liquid Surface
,”
Fluid Dyn. Res.
,
12
(
2
), pp.
61
93
.
6.
Moreira
,
A. L. N.
,
Moita
,
A. S.
, and
Panao
,
M. R.
,
2010
, “
Advances and Challenges Explaining Fuel Spray Impingement: How Much of Single Droplet Impact Research Is Useful?
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
554
580
.
7.
Liu
,
H.
,
1981
,
Science and Engineering of Droplets Fundamentals and Applications
,
William Andrew Publishing, Norwich, NY
, p.
217
.
8.
Roisman
,
I. V.
,
Berberovic
,
E.
, and
Tropea
,
C.
,
2009
, “
Inertia Dominated Drop Collisions. I. On the Universal Flow in the Lamella
,”
Phys. Fluids
,
21
(
5
), p.
052103
.
9.
Roisman
,
I. V.
,
2009
, “
Inertia Dominated Drop Collisions. II. An Analytical Solution of the Navier–Stokes Equations for a Spreading Viscous Film
,”
Phys. Fluids
,
21
(
5
), p.
052104
.
10.
Kamnis
,
S.
,
Gu
,
S.
,
Lu
,
T. J.
, and
Chen
,
C.
,
2008
, “
Numerical Modeling of Sequential Droplet Impingements
,”
J. Phys. D
,
41
(
16
), p.
165303
.
11.
Nikolopoulos
,
N.
,
Theodorakakos
,
A.
, and
Bergeles
,
G.
,
2007
, “
A Numerical Investigation of the Evaporation Process of a Liquid Droplet Impinging Onto a Hot Substrate
,”
Int. J. Heat Mass Transfer
,
50
(1–2), pp.
303
319
.
12.
Takata
,
Y.
,
Hidaka
,
S.
,
Yamashita
,
A.
, and
Yamamoto
,
H.
,
2004
, “
Evaporation of Water Drop on a Plasma-Irradiated Hydrophilic Surface
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
320
328
.
13.
Bhardwaj
,
R.
,
Longtin
,
J. P.
, and
Attinger
,
D.
,
2010
, “
Interfacial Temperature Measurements, High-Speed Visualization and Finite-Element Simulations of Droplet Impact and Evaporation on a Solid Surface
,”
Int. J. Heat Mass Transfer
,
53
(19–20), pp.
3733
3744
.
14.
Negeed
,
E.-S. R.
,
Ishihara
,
N.
,
Tagashira
,
K.
,
Hidaka
,
S.
,
Kohno
,
M.
, and
Takata
,
Y.
,
2009
, “
Analysis of Direct Contact Between Liquid Droplet and Solid Hot Surface in Mono-Dispersed Spray Evaporation
,”
18th Symposium (ILASS-Japan) on Atomization
, Fukuoka, Japan, Dec. 17–18, pp.
141
148
.
15.
Negeed
,
E.-S. R.
,
Ishihara
,
N.
,
Tagashira
,
K.
,
Hidaka
,
S.
,
Kohno
,
M.
, and
Takata
,
Y.
,
2010
, “
Experimental Study on the Effect of Surface Conditions on Evaporation of Sprayed Liquid Droplet
,”
Int. J. Therm. Sci.
,
49
(
12
), pp.
2250
2271
.
16.
Negeed
,
E.-S. R.
,
Hidaka
,
S.
,
Kohno
,
M.
, and
Takata
,
Y.
,
2013
, “
High Speed Camera Investigation of the Impingement of Single Water Droplets on Oxidized High Temperature Surfaces
,”
Int. J. Therm. Sci.
,
63
, pp.
1
14
.
17.
Negeed
,
E.-S. R.
,
Hidaka
,
S.
,
Kohno
,
M.
, and
Takata
,
Y.
,
2013
, “
Effect of the Surface Roughness and Oxidation Layer on the Dynamic Behavior of Micrometric Single Water Droplets Impacting Onto Heated Surfaces
,”
Int. J. Therm. Sci.
,
70
, pp.
65
82
.
18.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2010
, “
A Model to Predict the Effect of Contact Angle on the Bubble Departure Diameter During Heterogeneous Boiling
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
964
969
.
19.
Moita
,
A. S.
, and
Moreira
,
A. L. N.
,
2012
, “
Scaling the Effects of Surface Topography in the Secondary Atomization Resulting From Droplet/Wall Interactions
,”
Exp. Fluids
,
52
(
3
), pp.
679
695
.
20.
Vignes-Adler
,
M.
,
2002
, “
Physico-Chemical Aspects of Forced Wetting
,”
Drop–Surface Interactions
,
M.
Rein
, ed.,
Springer Wien
,
New York
, p.
103
.
21.
Takata
,
J.
,
Hidaka
,
S.
, and
Uraguchi
,
T.
,
2005
, “
Boiling Feature on a Super Water-Repellent Surface
,”
Heat Transfer Eng.
,
27
(
8
), pp.
25
30
.
22.
Negeed
,
E.-S. R.
,
Albeirutty
,
M.
, and
Takata
,
Y.
,
2014
, “
Dynamic Behavior of Micrometric Single Water Droplets Impacting Onto Heated Surfaces With TiO2 Hydrophilic Coating
,”
Int. J. Therm. Sci.
,
79
, pp.
1
17
.
23.
Fujishima
,
A.
,
Hashimoto
,
K.
, and
Watanabe
,
T.
,
1999
,
TiO2 Photocatalysis—Fundamentals and Applications
,
BKC
,
Tokyo, Japan
.
24.
Takata
,
Y.
,
Hidaka
,
S.
,
Masuda
,
M.
, and
Ito
,
T.
,
2003
, “
Pool Boiling on a Superhydrophilic Surface
,”
Int. J. Energy Res.
,
27
(
2
), pp.
111
119
.
25.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1995
, “
Droplet–Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
151
173
.
26.
Srikar
,
R.
,
Gambaryan-Roisman
,
T.
,
Steffes
,
C.
,
Stephan
,
P.
,
Tropea
,
C.
, and
Yarin
,
A. L.
,
2009
, “
Nanofiber Coating of Surfaces for Intensification of Spray or Drop Impact Cooling
,”
Int. J. Heat Mass Transfer
,
52
(25–26), pp.
5814
5826
.
27.
Lembach
,
A.
,
Tan
,
H. B.
,
Roisman
,
I. V.
,
Gambaryan-Roisman
,
T.
,
Zhang
,
Y.
,
Tropea
,
C.
, and
Yarin
,
A. L.
,
2010
, “
Drop Impact, Spreading, Splashing and Penetration in Electrospun Nanofiber Mats
,”
Langmuir
,
26
(
12
), pp.
9516
9523
.
28.
Sinha-Ray
,
S.
,
Zhang
,
Y.
, and
Yarin
,
A. L.
,
2011
, “
Thorny Devil Nano-Textured Fibers: The Way to Cooling Rates of the Order of 1 kW/cm2
,”
Langmuir
,
27
(
1
), pp.
215
226
.
29.
Weickgenannt
,
C. M.
,
Zhang
,
Y.
,
Lembach
,
A. N.
,
Roisman
,
I. V.
,
Gambaryan-Roisman
,
T.
,
Yarin
,
A. L.
, and
Tropea
,
C.
,
2011
, “
Non-Isothermal Drop Impact and Evaporation on Polymer Nanofiber Mats
,”
Phys. Rev. E
,
83
(
3
), p.
036305
.
30.
Weickgenannt
,
C. M.
,
Zhang
,
Y.
,
Sinha-Ray
,
S.
,
Roisman
,
I. V.
,
Gambaryan-Roisman
,
T.
,
Tropea
,
C.
, and
Yarin
,
A. L.
,
2011
, “
The Inverse-Leidenfrost Phenomenon on Nanofiber Mats on Hot Surfaces
,”
Phys. Rev. E
,
84
(
3
), p.
036310
.
31.
Sinha-Ray
,
S.
, and
Yarin
,
A. L.
,
2014
, “
Drop Impact Cooling Enhancement on Nano-Textured Surfaces. Part I: Theory and Results of the Ground (1 g) Experiments
,”
Int. J. Heat Mass Transfer
,
70
, pp.
1095
1106
.
32.
Sinha-Ray
,
S.
,
Sinha-Ray
,
S.
,
Yarin
,
A. L.
,
Weickgenannt
,
C. M.
,
Emmert
,
J.
, and
Tropea
,
C.
,
2014
, “
Drop Impact Cooling Enhancement on Nano-Textured Surfaces. Part II: Results of the Parabolic Flight Experiments [Zero Gravity (0 g) and Supergravity (1.8 g)]
,”
Int. J. Heat Mass Transfer
,
70
, pp.
1107
1114
.
33.
Yamamoto
,
T.
,
Okubo
,
M.
,
Imai
,
N.
, and
Mori
,
Y.
,
2004
, “
Improvement on Hydrophilic and Hydrophobic Properties of Glass Surface Treated by Nonthermal Plasma Induced by Silent Corona Discharge
,”
Plasma Chem. Plasma Process.
,
24
(
1
), pp.
1
12
.
34.
Yan
,
L. C.
, and
Lu
,
D. N.
,
2006
, “
Surface Energy and Wettability of Plasma-Treated Polyacrylonitrile Fibers
,”
Plasma Chem. Plasma Process.
,
26
, pp.
119
126
.
35.
Sarwar
,
M. S.
,
Jeong
,
Y. H.
, and
Chang
,
S. H.
,
2007
, “
Subcooled Flow Boiling CHF Enhancement With Porous Surface Coatings
,”
Int. J. Heat Mass Transfer
,
50
, pp.
3649
3657
.
36.
Stow
,
C. D.
, and
Hadfield
,
M. G.
,
1981
, “
An Experimental Investigation of Liquid Flow Resulting From the Impact of Water Drop With an Unyielding Dry Surface
,”
Proc. R. Soc. London, Ser. A
,
373
(
1755
), pp.
419
441
.
37.
Marmanis
,
H.
, and
Thoroddsen
,
S. T.
,
1996
, “
Scaling of the Fingering Pattern of an Impact Drop
,”
Phys. Fluids
,
8
(
6
), pp.
1344
1346
.
38.
Scheller
,
B. L.
, and
Bousfield
,
D. W.
,
1995
, “
Newtonian Drop Impact With a Solid Surface
,”
AIChE J.
,
41
(
6
), pp.
1357
1367
.
39.
Pasandideh-Fard
,
M.
,
Bhola
,
R.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
1998
, “
Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments
,”
Int. J. Heat Mass Transfer
,
41
(
1
), pp.
2929
2945
.
40.
Chandra
,
S.
, and
Avedisian
,
C. T.
,
1991
, “
On the Collision of Droplet With a Solid Surface
,”
Proc. R. Soc. London, Ser. A
,
432
(
1884
), pp.
13
41
.
41.
Vadillo
,
D. C.
,
Soucemarianadin
,
A.
,
Delattre
,
C.
, and
Roux
,
D. C. D.
,
2009
, “
Dynamic Contact Angle Effects Onto the Maximum Drop Impact Spreading on Solid Surfaces
,”
Phys. Fluids
,
21
(
12
), p.
122002
.
42.
“Micro Jet Model MJ-020,” http://www.mect.co.jp
43.
Pasandideh-Fard
,
M.
,
Aziz
,
S. D.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2001
, “
Cooling Effectiveness of a Water Drop Impinging on a Hot Surface
,”
Int. J. Heat Fluid Flow
,
22
(
2
), pp.
201
210
.
44.
Senda
,
J.
,
Kanda
,
T.
,
Al-Roub
,
M.
,
Farrell
,
P. V.
,
Fukami
,
T.
, and
Fujimoto
,
H.
,
1997
, “
Modeling Spray Impingement Considering Fuel Film Formation on the Wall
,”
SAE
Technical Paper No. 970047.
You do not currently have access to this content.