In this study, we try to make an exergy analysis of an olefin cracking furnace more understandable by coupling it with the use of an artificial neural network–generic algorithm (ANN–GA) modeling. The presented method permits to provide an energy diagnosis of the process under a wide range of operating conditions. As a case study, one of the petrochemical complexes in Iran has been considered. The Petrosim process simulator software was used to obtain thermodynamic properties of the process streams and to perform exergy balances. The results are validated with industrial data obtained from the plant. The exergy destruction and exergetic efficiency for the main system components and the entire system were calculated. The simulation results reveal that the exergetic loss of the process increases with increasing steam ratio (SR) and decreases with coil outlet temperature (COT) and residence time (RT). The results show that the overall exergetic efficiency of the system is about 65%. The recorded and calculated data have been used as inputs for the neural network. The results show that ANN–GA is a highly effective method to optimize the performance of the neural networks, predicting the overall exergy efficiency. Comparing to phenomenological modeling based on the detailed knowledge of the furnace condition, the use of the introduced ANN–GA model saves significant amount of the time needed for the performance prediction of cracking furnaces.

References

References
1.
Ren
,
T.
,
Patel
,
M.
, and
Blok
,
K.
,
2006
, “
Olefins From Conventional and Heavy Feedstocks, Energy Use in Steam Cracking and Alternative Processes
,”
Energy
,
31
(
4
), pp.
425
451
.
2.
Karimzadeh
,
R.
,
Godini
,
H. R.
, and
Ghashghaee
,
M.
,
2009
, “
Flowsheeting of Steam Cracking Furnaces
,”
Chem. Eng. Res. Des.
,
87
(
1
), pp.
36
46
.
3.
Sadrameli
,
S. M.
, and
Green
,
A. E. S.
,
2005
, “
Systematics and Modeling Representations of Naphtha Thermal Cracking for Olefin Production
,”
J. Anal. Appl. Pyrolysis
,
73
(
2
), pp.
305
313
.
4.
Niaei
,
A.
,
Towfighi
,
J.
, and
Sadrameli
,
M. S.
,
2004
, “
The Combined Simulation of Heat Transfer and Pyrolysis Reaction in Industrial Cracking Furnaces
,”
Appl. Therm. Eng.
,
24
(
14–15
), pp.
2251
2265
.
5.
Masoomi
,
M. E.
,
Sadrameli
,
S. M.
, and
Towfighi
,
J.
,
2006
, “
Simulation, Optimization and Control of Thermal Cracking Pilot Plant Furnace
,”
Energy
,
31
(
4
), pp.
516
527
.
6.
Ghannadzadeh
,
A.
,
Thery-Hetreux
,
R.
,
Baudouin
,
O.
,
Baudet
,
P.
,
Floquet
,
P.
, and
Joulia
,
X.
,
2012
, “
General Methodology for Exergy Balance in ProSimPlus Process Simulator
,”
Energy
,
44
(
1
), pp.
38
59
.
7.
Gaggioli
,
R. A.
,
1998
, “
Available Energy and Exergy
,”
Int. J. Appl. Thermodyn.
,
1
(
1–4
), pp.
1
8
.
8.
Mehrpooya
,
M.
,
Vatani
,
M.
, and
Mousavi
,
A.
,
2010
, “
Optimum Design of Integrated Liquid Recovery Plants by Variable Population Size Genetic Algorithm
,”
Can. J. Chem. Eng.
,
88
(
6
), pp.
1054
1064
.
9.
Moran
,
M. J.
,
1982
,
Availability Analysis: A Guide to Efficient Energy Use
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
10.
Safarian
,
S.
, and
Aramoun
,
F.
,
2015
, “
Energy and Exergy Assessments of Modified Organic Rankine Cycles (ORCs)
,”
Energy Rep.
,
1
(
1
), pp.
1
7
.
11.
Kotas
,
T. J.
,
1995
,
The Exergy Method of Thermal Plant Analysis
,
Butterworths
,
London
.
12.
Kanoglu
,
M.
,
2002
, “
Exergy Analysis of Multistage Cascade Refrigeration Cycle Used for Natural Gas Liquefaction
,”
Int. J. Energy Res.
,
26
(
8
), pp.
763
774
.
13.
Li
,
Q.
, and
Lin
,
Y.
,
2016
, “
Exergy Analysis of the LFC Process
,”
Energy Conver. Manage.
,
108
(
15
), pp.
348
354
.
14.
Sciubba
,
E.
, and
Wall
,
G.
,
2007
, “
A Brief Commented History of Exergy From the Beginnings to 2004
,”
Int. J. Thermodyn.
,
10
(
1
), pp.
1
26
.
15.
Mafi
,
M.
,
Naeynian
,
S. M.
, and
Amidpour
,
M.
,
2008
, “
Exergy Analysis of Multistage Cascade Low Temperature Refrigeration Systems Used in Olefin Plants
,”
Int. J. Refrig.
,
32
(
2
), pp.
279
294
.
16.
Mehrpooya
,
M.
,
Jarrahian
,
A.
, and
Pishvaie
,
M. R.
,
2006
, “
Simulation and Exergy-Method Analysis of an Industrial Refrigeration Cycle Used in NGL Recovery Units
,”
Int. J. Energy Res.
,
30
(
15
), pp.
1336
1351
.
17.
Remeljej
,
C. W.
, and
Hoadley
,
A.
,
2006
, “
An Exergy Analysis of Small-Scale Liquefied Natural Gas (LNG) Liquefaction Processes
,”
Energy
,
31
(
12
), pp.
2005
2019
.
18.
Fabrega
,
F. M.
,
Rossi
,
J. S.
, and
d Angelo
,
J. V. H.
,
2010
, “
Exergetic Analysis of the Refrigeration System in Ethylene and Propylene Production Process
,”
Int. J. Refrig.
,
35
(
4
), pp.
1224
1231
.
19.
Mehrpooya
,
M.
,
Vatani
,
A.
, and
Mousavian
,
S. M. A.
,
2010
, “
Introducing a Novel Integrated NGL Recovery Process Configuration (With a Self-Refrigeration System (Open–Closed Cycle)) With Minimum Energy Requirement
,”
Chem. Eng. Process.
,
47
, pp.
376
388
.
20.
Fissore
,
D.
, and
Sokeipirim
,
D.
,
2011
, “
Simulation and Energy Consumption Analysis of a Propane Plus Recovery Plant From Natural Gas
,”
Fuel Process. Technol.
,
92
(
3
), pp.
656
662
.
21.
Ghorbani
,
B.
,
Salehi
,
G. R.
,
Ghaemmaleki
,
H.
,
Amidpour
,
M.
, and
Hamedi
,
M. H.
,
2012
, “
Simulation and Optimization of Refrigeration Cycle in NGL Recovery Plants With Exergy-Pinch Analysis
,”
J. Nat. Gas Sci. Eng.
,
7
, pp.
35
43
.
22.
MohdShariq
,
K. L.
, and
Moonyong
,
K. L.
,
2013
, “
Design Optimization of Single Mixed Refrigerant Natural Gas Liquefaction Process Using the Particle Swarm Paradigm With Nonlinear Constraints
,”
Energy
,
49
, pp.
146
155
.
23.
Vatani
,
A.
,
Mehrpooya
,
M.
, and
Palizdar
,
A.
,
2014
, “
Advanced Exergetic Analysis of Five Natural Gas Liquefaction Processes
,”
Energy Convers. Manage.
,
78
, pp.
720
737
.
24.
Karimi
,
H.
, and
Yousefi
,
S.
,
2012
, “
Application of Artificial Neural Network–Genetic Algorithm (ANN–GA) to Correlation of Density in Nanofluids
,”
Fluid Phase Equilib.
,
336
, pp.
79
83
.
25.
Sivapathasekaran
,
C.
,
Mukherjee
,
S.
,
Ray
,
A.
,
Gupta
,
A.
, and
Sen
,
R.
,
2010
, “
Artificial Neural Network Modeling and Genetic Algorithm Based Medium Optimization for the Improved Production of Marine Biosurfactant
,”
Bioresour. Technol.
,
101
(
8
), pp.
2884
2887
.
26.
Soleimani
,
R.
,
Shoushtari
,
N. A.
,
Mirza
,
B.
, and
Salahi
,
A.
,
2012
, “
Experimental Investigation, Modeling and Optimization of Membrane Separation Using Artificial Neural Network and Multi-Objective Optimization Using Genetic Algorithm
,”
Chem. Eng. Res. Des.
,
91
, pp.
883
903
.
27.
Kalyanmoy
,
D.
,
1996
,
Optimizations for Engineering Design–Algorithm and Examples
,
Prentice Hall of India
,
New Delhi
, pp.
290
333
.
28.
Szargut
,
J.
,
Morris
,
D. R.
, and
Steward
,
F. R.
,
1988
,
Exergy Analysis of Thermal, Chemical, and Metallurgical Processes
,
Hemisphere
,
New York
.
29.
Rivero
,
R.
, and
Garfias
,
M.
,
2006
, “
Standard Chemical Exergy of Elements Updated
,”
Energy
,
31
(
15
), pp.
3310
3326
.
30.
Demuth
,
H.
, and
Beale
,
M.
,
2002
,
Neural Network for Use With MATLAB. User's Guide
, Ver. 4,
The Mathworks
, Natick, MA.
31.
Plagnol
,
V.
,
Padhukasahasram
,
B.
,
Wall
,
J. D.
,
Marjoram
,
P.
, and
Nordborg
,
M.
,
2006
, “
Relative Influences of Crossing Over and Gene Conversion on the Pattern of Linkage Disequilibrium in Arabidopsis thaliana
,”
Genetics
,
172
(
4
), pp.
2441
2448
.
32.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem.: Fundam.
,
15
(
1
), pp.
59
64
.
You do not currently have access to this content.