A microstructure-sensitive thermomechanical simulation framework is developed to predict the mechanical and heat transfer properties of vertically aligned CNT (VACNT) arrays used as thermal interface materials (TIMs). The model addresses the gap between atomistic thermal transport simulations of individual CNTs (carbon nanotubes) and experimental measurements of thermal resistance of CNT arrays at mesoscopic length scales. Energy minimization is performed using a bead–spring coarse-grain model to obtain the microstructure of the CNT array as a function of the applied load. The microstructures obtained from the coarse-grain simulations are used as inputs to a finite volume solver that solves one-dimensional and three-dimensional Fourier heat conduction in the CNTs and filler matrix, respectively. Predictions from the finite volume solver are fitted to experimental data on the total thermal resistance of CNT arrays to obtain an individual CNT thermal conductivity of 12 W m−1 K−1 and CNT–substrate contact conductance of 7 × 107 W m−2 K−1. The results also indicate that the thermal resistance of the CNT array shows a weak dependence on the CNT–CNT contact resistance. Embedding the CNT array in wax is found to reduce the total thermal resistance of the array by almost 50%, and the pressure dependence of thermal resistance nearly vanishes when a matrix material is introduced. Detailed microstructural information such as the topology of CNT–substrate contacts and the pressure dependence of CNT–opposing substrate contact area are also reported.

References

1.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.
2.
Berber
,
S.
,
Kwon
,
Y.-K.
, and
Tomanek
,
D.
,
2000
, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
(
20
), pp.
4613
4616
.
3.
Cao
,
A.
,
Dickrell
,
P. L.
,
Sawyer
,
W. G.
,
Ghasemi-Nejhad
,
M. N.
, and
Ajayan
,
P. M.
,
2005
, “
Super-Compressible Foam-Like Carbon Nanotube Films
,”
Science
,
310
(
5752
), pp.
1307
1310
.
4.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P.
,
2001
, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
,
87
(
21
), p.
215502
.
5.
Yang
,
J.
,
Waltermire
,
S.
,
Chen
,
Y.
,
Zinn
,
A. A.
,
Xu
,
T. T.
, and
Li
,
D.
,
2010
, “
Contact Thermal Resistance Between Individual Multiwall Carbon Nanotubes
,”
Appl. Phys. Lett.
,
96
(
2
), p.
023109
.
6.
Cola
,
B. A.
,
Xu
,
J.
,
Cheng
,
C.
,
Xu
,
X.
,
Fisher
,
T. S.
, and
Hu
,
H.
,
2007
, “
Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces
,”
J. Appl. Phys.
,
101
(
5
), p.
054313
.
7.
Hu
,
X. J.
,
Padilla
,
A. A.
,
Xu
,
J.
,
Fisher
,
T. S.
, and
Goodson
,
K. E.
,
2005
, “
3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1109
1113
.
8.
Maschmann
,
M. R.
,
Zhang
,
Q.
,
Du
,
F.
,
Dai
,
L.
, and
Baur
,
J.
,
2011
, “
Length Dependent Foam-Like Mechanical Response of Axially Indented Vertically Oriented Carbon Nanotube Arrays
,”
Carbon
,
49
(
2
), pp.
386
397
.
9.
Won
,
Y.
,
Gao
,
Y.
,
Panzer
,
M. A.
,
Dogbe
,
S.
,
Pan
,
L.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
,
2012
, “
Mechanical Characterization of Aligned Multi-Walled Carbon Nanotube Films Using Microfabricated Resonators
,”
Carbon
,
50
(
2
), pp.
347
355
.
10.
Hu
,
M.
,
Keblinski
,
P.
,
Wang
,
J.-S.
, and
Raravikar
,
N.
,
2008
, “
Interfacial Thermal Conductance Between Silicon and a Vertical Carbon Nanotube
,”
J. Appl. Phys.
,
104
(
8
), p.
083503
.
11.
Ong
,
Z.-Y.
, and
Pop
,
E.
,
2010
, “
Molecular Dynamics Simulation of Thermal Boundary Conductance Between Carbon Nanotubes and SiO2
,”
Phys. Rev. B
,
81
(
15
), p.
155408
.
12.
Chalopin
,
Y.
,
Volz
,
S.
, and
Mingo
,
N.
,
2009
, “
Upper Bound to the Thermal Conductivity of Carbon Nanotube Pellets
,”
J. Appl. Phys.
,
105
(
8
), p.
084301
.
13.
Prasher
,
R. S.
,
Hu
,
X. J.
,
Chalopin
,
Y.
,
Mingo
,
N.
,
Lofgreen
,
K.
,
Volz
,
S.
,
Cleri
,
F.
, and
Keblinski
,
P.
,
2009
, “
Turning Carbon Nanotubes From Exceptional Heat Conductors Into Insulators
,”
Phys. Rev. Lett.
,
102
(
10
), p.
105901
.
14.
Zhong
,
H.
, and
Lukes
,
J. R.
,
2006
, “
Interfacial Thermal Resistance Between Carbon Nanotubes: Molecular Dynamics Simulations and Analytical Thermal Modeling
,”
Phys. Rev. B
,
74
(
12
), p.
125403
.
15.
Marconnet
,
A. M.
,
Yamamoto
,
N.
,
Panzer
,
M. A.
,
Wardle
,
B. L.
, and
Goodson
,
K. E.
,
2011
, “
Thermal Conduction in Aligned Carbon Nanotube Polymer Nanocomposites With High Packing Density
,”
ACS Nano
,
5
(
6
), pp.
4818
4825
.
16.
Nan
,
C.-W.
,
Liu
,
G.
,
Lin
,
Y.
, and
Li
,
M.
,
2004
, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
85
(
16
), pp.
3549
3551
.
17.
Srivastava
,
I.
,
Sadasivam
,
S.
,
Smith
,
K. C.
, and
Fisher
,
T. S.
,
2013
, “
Combined Microstructure and Heat Conduction Modeling of Heterogeneous Interfaces and Materials
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061603
.
18.
Volkov
,
A. N.
, and
Zhigilei
,
L. V.
,
2010
, “
Scaling Laws and Mesoscopic Modeling of Thermal Conductivity in Carbon Nanotube Materials
,”
Phys. Rev. Lett.
,
104
(
21
), p.
215902
.
19.
Volkov
,
A. N.
, and
Zhigilei
,
L. V.
,
2012
, “
Heat Conduction in Carbon Nanotube Materials: Strong Effect of Intrinsic Thermal Conductivity of Carbon Nanotubes
,”
Appl. Phys. Lett.
,
101
(
4
), p.
043113
.
20.
Cola
,
B. A.
,
Xu
,
J.
, and
Fisher
,
T. S.
,
2009
, “
Contact Mechanics and Thermal Conductance of Carbon Nanotube Array Interfaces
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3490
3503
.
21.
Barako
,
M.
,
Gao
,
Y.
,
Won
,
Y.
,
Marconnet
,
A.
,
Asheghi
,
M.
, and
Goodson
,
K.
,
2014
, “
Reactive Metal Bonding of Carbon Nanotube Arrays for Thermal Interface Applications
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
12
), pp.
1906
1913
.
22.
Marconnet
,
A. M.
,
Panzer
,
M. A.
, and
Goodson
,
K. E.
,
2013
, “
Thermal Conduction Phenomena in Carbon Nanotubes and Related Nanostructured Materials
,”
Rev. Mod. Phys.
,
85
(
3
), pp.
1295
1326
.
23.
Maschmann
,
M. R.
,
2015
, “
Integrated Simulation of Active CNT Forest Growth and Mechanical Compression
,”
Carbon
,
86
, pp.
26
37
.
24.
Buehler
,
M. J.
,
2006
, “
Mesoscale Modeling of Mechanics of Carbon Nanotubes: Self Assembly, Self-Folding, and Fracture
,”
J. Mater. Res.
,
21
(
11
), pp.
2855
2869
.
25.
Volkov
,
A. N.
, and
Zhigilei
,
L. V.
,
2010
, “
Structural Stability of Carbon Nanotube Films: The Role of Bending Buckling
,”
ACS Nano
,
4
(
10
), pp.
6187
6195
.
26.
Volkov
,
A. N.
,
Shiga
,
T.
,
Nicholson
,
D.
,
Shiomi
,
J.
, and
Zhigilei
,
L. V.
,
2012
, “
Effect of Bending Buckling of Carbon Nanotubes on Thermal Conductivity of Carbon Nanotube Materials
,”
J. Appl. Phys.
,
111
(
5
), p.
053501
.
27.
Ostanin
,
I.
,
Ballarini
,
R.
,
Potyondy
,
D.
, and
Dumitrică
,
T.
,
2013
, “
A Distinct Element Method for Large Scale Simulations of Carbon Nanotube Assemblies
,”
J. Mech. Phys. Solids
,
61
(
3
), pp.
762
782
.
28.
Cranford
,
S.
,
Yao
,
H.
,
Ortiz
,
C.
, and
Buehler
,
M. J.
,
2010
, “
A Single Degree of Freedom Lollipop Model for Carbon Nanotube Bundle Formation
,”
J. Mech. Phys. Solids
,
58
(
3
), pp.
409
427
.
29.
Li
,
Y.
, and
Kröger
,
M.
,
2012
, “
A Theoretical Evaluation of the Effects of Carbon Nanotube Entanglement and Bundling on the Structural and Mechanical Properties of Buckypaper
,”
Carbon
,
50
(
5
), pp.
1793
1806
.
30.
Li
,
Y.
, and
Kröger
,
M.
,
2012
, “
Computational Study on Entanglement Length and Pore Size of Carbon Nanotube Buckypaper
,”
Appl. Phys. Lett.
,
100
(
2
), p.
021907
.
31.
Yang
,
X.
,
He
,
P.
, and
Gao
,
H.
,
2012
, “
Competing Elastic and Adhesive Interactions Govern Deformation Behaviors of Aligned Carbon Nanotube Arrays
,”
Appl. Phys. Lett.
,
101
(
5
), p.
053105
.
32.
Won
,
Y.
,
Gao
,
Y.
,
Panzer
,
M. A.
,
Xiang
,
R.
,
Maruyama
,
S.
,
Kenny
,
T. W.
,
Cai
,
W.
, and
Goodson
,
K. E.
,
2013
, “
Zipping, Entanglement, and the Elastic Modulus of Aligned Single-Walled Carbon Nanotube Films
,”
Proc. Natl. Acad. Sci.
,
110
(
51
), pp.
20426
20430
.
33.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
,
1997
, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
,
277
(
5334
), pp.
1971
1975
.
34.
Ru
,
C.
,
2000
, “
Effective Bending Stiffness of Carbon Nanotubes
,”
Phys. Rev. B
,
62
(
15
), pp.
9973
9976
.
35.
Cranford
,
S.
, and
Buehler
,
M. J.
,
2009
, “
Mechanomutable Carbon Nanotube Arrays
,”
Int. J. Mater. Struct. Integrity
,
3
(
2–3
), pp.
161
178
.
36.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
37.
Kumar
,
S.
,
Alam
,
M. A.
, and
Murthy
,
J. Y.
,
2007
, “
Computational Model for Transport in Nanotube-Based Composites With Applications to Flexible Electronics
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
500
508
.
38.
Pharr
,
G.
,
Oliver
,
W.
, and
Brotzen
,
F.
,
1992
, “
On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation
,”
J. Mater. Res.
,
7
(
3
), pp.
613
617
.
39.
Hu
,
H.
,
Wang
,
X.
, and
Xu
,
X.
,
1999
, “
Generalized Theory of the Photoacoustic Effect in a Multilayer Material
,”
J. Appl. Phys.
,
86
(
7
), pp.
3953
3958
.
40.
Wang
,
X.
,
Cola
,
B. A.
,
Bougher
,
T. L.
,
Hodson
,
S. L.
,
Fisher
,
T. S.
, and
Xu
,
X.
,
2013
, “
Photoacoustic Technique for Thermal Conductivity and Thermal Interface Measurements
,”
Annu. Rev. Heat Transfer
,
16
(
1
), pp.
135
157
.
41.
Zhou
,
W.
,
Huang
,
Y.
,
Liu
,
B.
,
Hwang
,
K. C.
,
Zuo
,
J. M.
,
Buehler
,
M. J.
, and
Gao
,
H.
,
2007
, “
Self-Folding of Single- and Multiwall Carbon Nanotubes
,”
Appl. Phys. Lett.
,
90
(
7
), p.
073107
.
42.
Lu
,
Y.
,
Joseph
,
J.
,
Zhang
,
Q.
,
Maschmann
,
M.
,
Dai
,
L.
, and
Baur
,
J.
,
2012
, “
Large-Displacement Indentation Testing of Vertically Aligned Carbon Nanotube Arrays
,”
Exp. Mech.
,
52
(
9
), pp.
1551
1554
.
43.
Wang
,
Y.
,
Sadasivam
,
S.
, and
Fisher
,
T. S.
,
2015
. “
Combined Microstructure and Heat Transfer Modeling of Carbon Nanotube Thermal Interface Materials
,” http://dx.doi.org/10.4231/D3SN0152F
44.
Hu
,
L.
, and
McGaughey
,
A. J.
,
2014
, “
Thermal Conductance of the Junction Between Single-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
,
105
(
19
), p.
193104
.
45.
Cola
,
B. A.
,
Hodson
,
S. L.
,
Xu
,
X.
, and
Fisher
,
T. S.
,
2008
, “
Carbon Nanotube Array Thermal Interfaces Enhanced With Paraffin Wax
,”
ASME
Paper No. HT2008-56483.
You do not currently have access to this content.