Liquid film flow boiling heat transfer driven by electrohydrodynamic (EHD) conduction pumping is experimentally studied on a surface with a novel metal-plated nanofiber-mat coating. The nanotextured surface is formed on a copper substrate covered by an electrospun polymer nanofiber mat, which is copper-plated as a postprocess. The mat has a thickness of about 30 μm and is immersed in saturated HCFC-123. The objective is to study electrowetting of the copper-plated nanofiber-enhanced surface via EHD conduction pumping mechanism for the entire liquid film flow boiling regime leading up to critical heat flux (CHF), and compare it to the bare surface without EHD-driven flow. The results show that with the combination of these two techniques, for a given superheat value, enhancement in heat flux and boiling heat transfer coefficient is as high as 555% compared to the bare surface. The results are quite promising for thermal management applications.

References

References
1.
Fisenko
,
S. P.
,
Petruchik
,
A. I.
, and
Solodukhin
,
A. D.
,
2002
, “
Evaporative Cooling of Water in a Natural Draft Cooling Tower
,”
Int. J. Heat Mass Transfer
,
45
(
23
), pp.
4683
4694
.
2.
Hawlader
,
M. N. A.
, and
Liu
,
B. M.
,
2002
, “
Numerical Study of the Thermal–Hydraulic Performance of Evaporative Natural Draft Cooling Towers
,”
Appl. Therm. Eng.
,
22
(
1
), pp.
41
59
.
3.
Yang
,
J.
,
Chow
,
L. C.
, and
Pais
,
M. R.
,
1996
, “
Nucleate Boiling Heat Transfer in Spray Cooling
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
668
671
.
4.
Aamir
,
M. A.
,
Awais
,
M. M.
, and
Watkins
,
A. P.
,
2002
, “
Application of Artificial Neural Networks Modeling to Sprays and Spray Impingement Heat Transfer
,”
Atomization Sprays
,
12
(
4
), pp.
359
386
.
5.
Sinha-Ray
,
S.
,
Zhang
,
Y.
, and
Yarin
,
A. L.
,
2010
, “
Thorny Devil Nanotextured Fibers: The Way to Cooling Rates on the Order of 1 kW/cm2
,”
Langmuir
,
27
(
1
), pp.
215
226
.
6.
Sinha-Ray
,
S.
, and
Yarin
,
A. L.
,
2014
, “
Drop Impact Cooling Enhancement on Nano-Textured Surfaces. Part I: Theory and Results of the Ground (1g) Experiments
,”
Int. J. Heat Mass Transfer
,
70
, pp.
1095
1106
.
7.
Kim
,
J.
,
2009
, “
Review of Nucleate Pool Boiling Bubble Heat Transfer Mechanisms
,”
Int. J. Multiphase Flow
,
35
(
12
), pp.
1067
1076
.
8.
Yarin
,
L.
,
Mosyak
,
A.
, and
Hetsroni
,
G.
,
2009
,
Fluid Flow, Heat Transfer and Boiling in Micro-Channels
,
Springer
,
Berlin
.
9.
Pearson
,
M. R.
, and
Seyed-Yagoobi
,
J.
,
2011
, “
Experimental Study of EHD Conduction Pumping at the Meso- and Micro-Scale
,”
IEEE J. Electrost.
,
69
(
6
), pp.
479
485
.
10.
Patel
,
V. K.
,
Robinson
,
F.
,
Seyed-Yagoobi
,
J.
, and
Didion
,
J.
,
2013
, “
Terrestrial and Microgravity Experimental Study of Microscale Heat-Transport Device Driven by Electrohydrodynamic Conduction Pumping
,”
IEEE Trans. Ind. Appl.
,
49
(
6
), pp.
2397
2401
.
11.
Pearson
,
M. R.
, and
Seyed-Yagoobi
,
J.
,
2013
, “
Electrohydrodynamic Conduction Driven Single- and Two-Phase Flow in Microchannels With Heat Transfer
,”
ASME J. Heat Transfer
,
135
(
10
), p.
101701
.
12.
Patel
,
V. K.
, and
Seyed-Yagoobi
,
J.
,
2015
, “
A Mesoscale Electrohydrodynamic-Driven Two-Phase Flow Heat Transport Device in Circular Geometry and In-Tube Boiling Heat Transfer Coefficient Under Low Mass Flux
,”
ASME J. Heat Transfer
,
137
(
4
), p.
041504
.
13.
Sinha-Ray
,
S.
,
Sinha-Ray
,
S.
,
Sriram
,
H.
, and
Yarin
,
A. L.
,
2014
, “
Flow of Suspensions of Carbon Nanotubes Carrying Phase Change Materials Through Microchannels and Heat Transfer Enhancement
,”
Lab Chip
,
14
(
3
), pp.
494
508
.
14.
Khakpour
,
Y.
, and
Seyed-Yagoobi
,
J.
,
2015
, “
Evaporating Liquid Film Flow in the Presence of Micro-Encapsulated Phase Change Materials: A Numerical Study
,”
ASME J. Heat Transfer
,
137
(
2
), p.
021501
.
15.
Atten
,
P.
, and
Seyed-Yagoobi
,
J.
,
2003
, “
Electrohydrodynamically Induced Dielectric Liquid Flow Through Pure Conduction in Point/Plane Geometry
,”
IEEE Trans. Dielectr. Electr. Insul.
,
10
(
1
), pp.
27
36
.
16.
Jeong
,
S. I.
,
Seyed-Yagoobi
,
J.
, and
Atten
,
P.
,
2003
, “
Theoretical/Numerical Study of Electrohydrodynamic Pumping Through Conduction Phenomenon
,”
IEEE Trans. Ind. Appl.
,
39
(
2
), pp.
355
361
.
17.
Yazdani
,
M.
, and
Seyed-Yagoobi
,
J.
,
2008
, “
Numerical Investigation of Electrohydrodynamic-Conduction Pumping of Liquid Film in the Presence of Evaporation
,”
ASME J. Heat Transfer
,
131
(
1
), p.
011602
.
18.
Yazdani
,
M.
, and
Seyed-Yagoobi
,
J.
,
2009
, “
Electrically Induced Dielectric Liquid Film Flow Based on Electric Conduction Phenomenon
,”
IEEE Trans. Dielectr. Electr. Insul.
,
16
(
3
), pp.
768
777
.
19.
Pearson
,
M. R.
, and
Seyed-Yagoobi
,
J.
,
2015
, “
Experimental Study of Linear and Radial Two-Phase Heat Transport Devices Driven by Electrohydrodynamic Conduction Pumping
,”
ASME J. Heat Transfer
,
137
(
2
), p.
022901
.
20.
Patel
,
V. K.
,
Seyed-Yagoobi
,
J.
,
Robinson
,
F.
, and
Didion
,
J.
,
2015
, “
Effect of Gravity on Liquid Film Flow Boiling Driven by Electrohydrodynamic Conduction Pumping
,”
AIAA
Paper (accepted).
21.
Chen
,
R.
,
Lu
,
M.-C.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumdar
,
A.
,
2009
, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nano Lett.
,
9
(
2
), pp.
548
553
.
22.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2012
, “
The Effect of Capillary Wicking Action of Micro/Nano Structures on Pool Boiling Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
89
92
.
23.
Chu
,
K.-H.
,
Joung
,
Y. S.
,
Enright
,
R.
,
Buie
,
C. R.
, and
Wang
,
E. N.
,
2013
, “
Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement
,”
Appl. Phys. Lett.
,
102
(
15
), p.
151602
.
24.
Jun
,
S.
,
Sinha-Ray
,
S.
, and
Yarin
,
A. L.
,
2013
, “
Pool Boiling on Nano-Textured Surfaces
,”
Int. J. Heat Mass Transfer
,
62
, pp.
99
111
.
25.
Zou
,
A.
, and
Maroo
,
S. C.
,
2013
, “
Critical Height of Micro/Nano Structures for Pool Boiling Heat Transfer Enhancement
,”
Appl. Phys. Lett.
,
103
(
22
), p.
221602
.
26.
Dong
,
L.
,
Quan
,
X.
, and
Cheng
,
P.
,
2014
, “
An Experimental Investigation of Enhanced Pool Boiling Heat Transfer From Surfaces With Micro/Nano-Structures
,”
Int. J. Heat Mass Transfer
,
71
, pp.
189
196
.
27.
Rahman
,
M. M.
,
Ölçeroğlu
,
E.
, and
McCarthy
,
M.
,
2014
, “
Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces
,”
Langmuir
,
30
(
37
), pp.
11225
11234
.
28.
Reneker
,
D. H.
,
Yarin
,
A. L.
,
Zussman
,
E.
, and
Xu
,
H.
,
2007
, “
Electrospinning of Nanofibers From Polymer Solutions and Melts
,”
Advances in Applied Mechanics
,
A.
Hassan
, and
G. E.
van der
, eds.,
Elsevier
, Boston, MA, pp.
343
346
.
29.
DuPont
,
2005
,
HCFC-123 Properties, Uses, Storage and Handling
,
DuPont Fluorochemicals
,
Wilmington, DE
.
30.
Siddiqui
,
M.
, and
Seyed-Yagoobi
,
J.
,
2009
, “
Experimental Study of Pumping of Liquid Film With Electric Conduction Phenomenon
,”
IEEE Trans. Ind. Appl.
,
45
(
1
), pp.
3
9
.
31.
DuPont
,
2005
,
Thermodynamic Properties of HCFC-123 Refrigerant
,
DuPont Fluorochemicals
,
Wilmington, DE
.
32.
Patel
,
V. K.
, and
Seyed-Yagoobi
,
J.
,
2015
, “
Combined Electrohydrodynamic Conduction Pumping and Dielectrophoresis for Enhancement of Liquid Film Flow Boiling
,” ASME Paper No. IMECE2015-53247.
You do not currently have access to this content.