Thermal interface materials (TIMs) have reached values approaching the measurement uncertainty of standard ASTM D5470 based testers of approximately ±1 × 10−6 m2 K/W. This paper presents a miniature ASTM-type steady-state tester that was developed to address the resolution limits of standard testers by reducing the heat meter bar thickness and using infrared (IR) thermography to measure the temperature gradient along the heat meter bar. Thermal interfacial resistance measurements on the order of 1 × 10−6 m2 K/W with an order of magnitude improvement in the uncertainty of ±1 × 10−7 m2 K/W are demonstrated. These measurements were made on several TIMs with a thermal resistance as low as 1.14 × 10−6 m2 K/W.

References

References
1.
Jarrett
,
R. N.
,
Merritt
,
C. K.
, and
Hisert
,
R. J.
,
2007
, “
Comparison of Test Methods for High Performance Thermal Interface Materials
,”
23rd IEEE
SEMI-THERM
Symposium, pp.
83
86
.
2.
Hu
,
K.
, and
Chung
,
D. D. L.
,
2011
, “
Flexible Graphite Modified by Carbon Black Paste for Use as a Thermal Interface Material
,”
Carbon
,
49
(
4
), pp.
1075
1086
.
3.
Warzoha
,
R. J.
,
Zhang
,
D.
,
Feng
,
G.
, and
Fleischer
,
A. S.
,
2013
, “
Engineering Interfaces in Carbon Nanostructured Mats for the Creation of Energy Efficient Thermal Interface Materials
,”
Carbon
,
61
, pp.
441
457
.
4.
Wasniewski
,
J. R.
,
Altman
,
D. H.
,
Hodson
,
S. L.
,
Fischer
,
T. S.
,
Bulusa
,
A.
,
Graham
,
S.
, and
Cole
,
B. A.
,
2012
, “
Characterization of Metallically Bonded Carbon Nanotube-Based Thermal Interface Materials Using a High Accuracy 1D Steady-State Technique
,”
ASME J. Electron. Packag.
,
134
(
2
), p.
020901
5.
Liu
,
J.
,
Sahaym
,
U.
,
Dutta
,
I.
,
Raj
,
R.
,
Renavikar
,
M.
,
Sidhu
,
R. S.
, and
Mahajan
,
R.
,
2014
, “
Interfacially Engineered Liquid-Phase-Sintered Cu=In Composite Solders for Thermal Interface Material Applications
,”
J. Mater. Sci.
,
49
(
22
), pp.
7844
7854
.
6.
Roy
,
C. K.
,
Bhavnani
,
S.
,
Hamilton
,
M. C.
,
Johnson
,
R. W.
,
Nguyen
,
J. L.
,
Knight
,
R. W.
, and
Harris
,
D. K.
,
2015
, “
Investigation Into the Application of Low Melting Temperature Alloys as Wet Thermal Interface Materials
,”
Int. J. Heat Mass Transfer
,
85
, pp.
996
1002
.
7.
Lin
,
C.
, and
Chung
,
D. D. L.
,
2009
, “
Graphite Nanoplatelet Pastes vs. Carbon Black Pastes as Thermal Interface Materials
,”
Carbon
,
47
(
1
), pp.
295
305
.
8.
Shahil
,
K. M. F.
, and
Balandin
,
A. A.
,
2012
, “
Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials
,”
Nano Lett.
,
12
(
2
), pp.
861
867
.
9.
Bar-Cohen
,
A.
,
Matin
,
K.
, and
Narumanchi
,
S.
,
2015
, “
Nano Thermal Interface Materials: Technology Review and Recent Results
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040803
.
10.
ASTM D5470-12, 2012,
Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials
, ASTM International, West Conshohocken, PA, 2012.
11.
Taylor
,
J. R.
,
1997
,
An Introduction to Error Analysis
,
2nd ed.
,
University Science Books
,
Mill Valley, CA
.
12.
Gwinn
,
J. P.
, and
Webb
,
R. L.
,
2003
, “
Performance and Testing of Thermal Interface Materials
,”
Microelectron. J.
,
34
(
3
), pp.
215
222
.
13.
Kempers
,
R.
,
Robinson
,
A.
, and
Lyons
,
A.
,
2009
, “
Characterization of Metal Micro-Textured Thermal Interface Materials
,”
Thermal Investigations of ICs and Systems, 2009
,
THERMINIC 2009
, Leuven, Oct. 7–9, pp. 210–215.
14.
Hu
,
X. J.
,
Padilla
,
A. A.
,
Xu
,
J.
,
Fischer
,
T. S.
, and
Goodson
,
K. E.
,
2006
, “
3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1109
1113
.
15.
Zhao
,
Y.
,
Chu
,
R. S.
, and
Majumdar
,
A.
,
2009
, “
Transient Thermo-Reflectance Method for Characterization of Thermal Interface Material Based on Carbon Nanotube Array
,”
ASME
Paper No. MNHMT2009-18306.
16.
Panzer
,
M. A.
,
Zhang
,
G.
,
Mann
,
D.
,
Hu
,
X.
,
Pop
,
E.
,
Dai
,
H.
, and
Goodson
,
K. E.
,
2008
, “
Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays
,”
ASME J. Heat Transfer
,
130
(
5
), p.
052401
.
17.
Vass-Varnai
,
A.
,
Szekely
,
V.
,
Sarkany
,
Z.
, and
Rencz
,
M.
,
2011
, “
New Level of Accuracy in TIM Measurements
,”
27th IEEE
SEMI-THERM
Symposium, San Jose, CA, Mar. 20–24, pp.
317
324
.
18.
Marconnet
,
A. M.
,
Yamamoto
,
N.
,
Panzer
,
M. A.
,
Wardle
,
B. L.
, and
Goodson
,
K. E.
,
2011
, “
Thermal Conduction in Aligned Carbon Nanotube–Polymer Nanocomposites With High Packing Density
,”
ACS Nano
,
5
(
6
), pp.
4818
4825
.
19.
Hu
,
X. J.
,
Panzer
,
M. A.
, and
Goodson
,
K. E.
,
2007
, “
Infrared Microscopy Thermal Characterization of Opposing Carbon Nanotube Arrays
,”
ASME J. Heat Transfer
,
129
(
1
), pp.
91
93
.
20.
Xu
,
J.
, and
Fisher
,
T. S.
,
2005
, “
Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays
,”
Int. J. Heat Mass Transfer
,
49
(
9
), pp.
1658
1666
.
21.
Salem
,
T. E.
,
Ibitayo
,
D.
, and
Geil
,
B. R.
,
2007
, “
Validation of Infrared Camera Thermal Measurements on High-Voltage Power Electronic Components
,”
IEEE Trans. Instrum. Meas.
,
56
(
5
), pp.
1973
1978
.
22.
Material Properties of AlN Substrate
,” http://www.sanjosedelta.com/aluminum_nitride.shtml
23.
Wilson
,
J.
,
2006
, “
Thermal Conductivity of Solders
,”
Electron. Cool.
,
12
(
3
), pp.
4
5
.
24.
Narumanchi
,
S.
,
Mihalic
,
M.
,
Kelly
,
K.
, and
Eesley
,
G.
,
2008
,
Thermal Interface Materials for Power Electronics Applications
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
ITHERM
2008, Orlando, FL, May 28–31, pp.
395
404
.
25.
You do not currently have access to this content.