Silica aerogels are porous ultralight materials with exceptional physical properties that are promising materials for thermal insulation applications. This paper theoretically and experimentally investigates the spectral scattering and absorption coefficients of a porous silica aerogel. Silica aerogel samples were prepared with the same compositions and various thicknesses using the sol-gel technique and supercritical drying. The spectral normal-hemispherical transmittances and reflectances of the silica aerogel samples with various thicknesses were measured for wavelengths of 0.38–15 μm. The reflectance and transmittance are higher at short wavelengths than in the infrared region due to the strong scattering and weak absorption at short wavelengths. The thicker samples strongly attenuate the spectral normal-hemispherical transmittance, but have little effect on the spectral normal-hemispherical reflectance. A modified two-flux radiative transfer model was used to analyze the radiation propagation in the silica aerogel with a rough surface morphology and millimeter thicknesses to develop theoretical expressions for the spectral directional-hemispherical reflectance and transmittance. Then, the optical constants, including the absorption coefficient and the scattering coefficient, were determined for wavelengths of 0.38–15 μm based on experimental data by the least-squares algorithm. The results show that when considering the radiation propagation inside the sample, the surface reflection at the air–aerogel interface can be neglected for aerogel thicker than 1.1 mm when the absorbing and scattering effects inside the sample are quite important. The analysis provides valuable data for the optical properties for silica aerogel applications.

References

References
1.
Schaefer
,
D. W.
, and
Keefer
,
K. D.
,
1986
, “
Structure of Random Porous Materials: Silica Aerogel
,”
Phys. Rev. Lett.
,
56
(
20
), pp.
2199
2202
.
2.
Fomitchev
,
D. V.
,
Trifu
,
R.
, and
Gould
,
G.
,
2004
, “
Fiber Reinforced Silica Aerogel Composites: Thermal Insulation for High-Temperature Applications
,”
Engineering, Construction, and Operations in Challenging Environments
,
Earth and Space, ASCE
,
Reston, VA
, pp.
968
975
.
3.
Reim
,
M.
,
Reichenauer
,
G.
,
Korner
,
W.
,
Manara
,
J.
,
Arduini-Schuster
,
M.
,
Korder
,
S.
,
Beck
,
A.
, and
Fricke
,
J.
,
2004
, “
Silica-Aerogel Granulate-Structural, Optical and Thermal Properties
,”
J. Non-Cryst. Solids
,
350
, pp.
358
363
.
4.
Henning
,
S.
, and
Svensson
,
L.
,
1981
, “
Production of Silica Aerogel
,”
Phys. Scr.
,
23
, pp.
697
702
.
5.
Gurav
,
J. L.
,
Jung
, I
. K.
,
Park
,
H. H.
,
Kang
,
E. S.
, and
Nadargi
,
D. Y.
,
2010
, “
Silica Aerogel: Synthesis and Applications
,”
J. Nanomater.
,
2010
, p.
409310
.
6.
Baetensa
,
R.
,
Jelle
,
B. P.
, and
Gustavsen
,
A.
,
2011
, “
Aerogel Insulation for Building Applications: A State-of-the-Art Review
,”
Energy Build.
,
43
(
4
), pp.
761
769
.
7.
Cha
,
J.
,
Kim
,
S.
,
Park
,
K. W.
,
Lee
,
D. R.
,
Jo
,
J. H.
, and
Kim
,
S.
,
2014
, “
Improvement of Window Thermal Performance Using Aerogel Insulation Film for Building Energy Saving
,”
J. Therm. Anal. Calorim.
,
116
(
1
), pp.
219
224
.
8.
Lee
,
K. H.
,
Kim
,
S. Y.
, and
Yoo
,
K. P.
,
1995
, “
Low-Density, Hydrophobic Aerogels
,”
J. Non-Cryst. Solids
,
186
, pp.
18
22
.
9.
Adachi
,
I.
,
Ishii
,
Y.
,
Kawai
,
H.
,
Kuratani
,
A.
, and
Tabata
,
M.
,
2008
, “
Study of a Silica Aerogel for a Cherenkov Radiator
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
595
(
1
), pp.
180
182
.
10.
Tabata
,
M.
,
Adachi
,
I.
,
Hatakeyama
,
Y.
,
Kawai
,
H.
,
Morita
,
T.
, and
Nishikawa
,
K.
,
2012
, “
Optical and Radiographical Characterization of Silica Aerogel for Cherenkov Radiator
,”
IEEE Trans. Nucl. Sci.
,
59
(
5
), pp.
2506
2511
.
11.
Reynolds
,
J. G.
,
Coronado
,
P. R.
, and
Hrubesh
,
L. W.
,
2001
, “
Hydrophobic Aerogels for Oil-Spill Cleanup-Intrinsic Absorbing Properties
,”
Energy Sources
,
23
(
9
), pp.
831
843
.
12.
Boyse
,
R. A.
, and
Ko
,
E. I.
,
1996
, “
Preparation and Characterization of Zirconia-Phosphate Aerogels
,”
Catal. Lett.
,
38
(
3
), pp.
225
230
.
13.
Bedilo
,
A. F.
, and
Klabundey
,
K. J.
,
1998
, “
Synthesis of Catalytically Active Sulfated Zirconia Aerogels
,”
J. Catal.
,
176
(
2
), pp.
448
458
.
14.
Suh
,
D. J.
,
Park
,
T. J.
,
Han
,
H. Y.
, and
Lim
,
J. C.
,
2002
, “
Synthesis of High-Surface-Area Zirconia Aerogels With a Well-Developed Mesoporous Texture Using CO2 Supercritical Drying
,”
Chem. Mater.
,
14
(
4
), pp.
1452
1454
.
15.
Yusuf
,
M. M.
,
Imai
,
H.
, and
Hirashima
,
H.
,
2002
, “
Preparation of Porous Titania Film by Modified Sol-Gel Method and Its Application to Photocatalyst
,”
J. Sol-Gel Sci. Technol.
,
25
(
1
), pp.
65
74
.
16.
Hirashima
,
H.
,
Kojima
,
C.
, and
Imai
,
H.
,
1997
, “
Application of Alumina Aerogels as Catalysts
,”
J. Sol-Gel Sci. Technol.
,
8
(
1
), pp.
843
846
.
17.
Scheuerpflug
,
P.
,
Morper
,
H. J.
,
Neubert
,
G.
, and
Fricke
,
J.
,
1991
, “
Low-Temperature Thermal Transport in Silica Aerogels
,”
J. Phys. D: Appl. Phys.
,
24
(
8
), pp.
1395
1403
.
18.
Rettelbach
,
T.
,
Sauberlich
,
J.
,
Korder
,
S.
, and
Fricke
,
J.
,
1995
, “
Thermal Conductivity of IR-Opacified Silica Aerogel Powders Between 10 K and 275K
,”
J. Phys. D: Appl. Phys.
,
28
(
3
), pp.
581
587
.
19.
Thibault
,
P.
,
Prejean
,
J. J.
, and
Puech
,
L.
,
1995
, “
Silica-Aerogel Thermal Expansion Induced by Submonolayer Helium Adsorption
,”
Phys. Rev. B
,
52
(
24
), pp.
17491
17500
.
20.
Faivre
,
C.
,
Bellet
,
D.
, and
Dolino
,
G.
,
2000
, “
X-Ray Diffraction Investigation of the Low Temperature Thermal Expansion of Porous Silicon
,”
J. Appl. Phys.
,
87
(
5
), pp.
2131
2136
.
21.
Spagnol
,
S.
,
Lartigue
,
B.
,
Trombe
,
A.
, and
Despetis
,
F.
,
2009
, “
Experimental Investigations on the Thermal Conductivity of Silica Aerogels by a Guarded Thin-Film-Heater Method
,”
ASME J. Heat Transfer
,
131
(
7
), p.
074501
.
22.
Yuan
,
B.
,
Ding
,
S. Q.
,
Wang
,
D. D.
,
Wang
,
G.
, and
Li
,
H. X.
,
2012
, “
Heat Insulation Properties of Silica Aerogel/Glass Fiber Composites Fabricated by Press Forming
,”
Mater. Lett.
,
75
, pp.
204
206
.
23.
Wei
,
G. S.
,
Liu
,
Y. S.
,
Zhang
,
X. X.
, and
Du
,
X. Z.
,
2013
, “
Radiative Heat Transfer Study on Silica Aerogel and Its Composite Insulation Materials
,”
J. Non-Cryst. Solids
,
362
, pp.
231
236
.
24.
Cohen
,
E.
, and
Glicksman
,
L.
,
2014
, “
Analysis of the Transient Hot-Wire Method to Measure Thermal Conductivity of Silica Aerogel: Influence of Wire Length, and Radiation Properties
,”
ASME J. Heat Transfer
,
136
(
4
), p.
041301
.
25.
Xie
,
T.
,
He
,
Y. L.
,
Tong
,
Z. X.
,
Yan
,
W. X.
, and
Xie
,
X. Q.
,
2014
, “
Transient Heat Transfer Characteristic of Silica Aerogel Insulating Material Considering Its Endothermic Reaction
,”
Int. J. Heat Mass Transfer
,
68
, pp.
633
640
.
26.
Neugebauer
,
A.
,
Chen
,
K.
,
Tang
,
A.
,
Allgeier
,
A.
,
Glicksman
,
L. R.
, and
Gibson
,
L. J.
,
2014
, “
Thermal Conductivity and Characterization of Compacted, Granular Silica Aerogel
,”
Energy Build.
,
79
, pp.
47
57
.
27.
Gutzov
,
S.
,
Danchova
,
N.
,
Karakashev
,
S. I.
,
Khristov
,
M.
,
Ivanova
,
J.
, and
Ulbikas
,
J.
,
2014
, “
Preparation and Thermal Properties of Chemically Prepared Nanoporous Silica Aerogels
,”
J. Sol-Gel Sci. Technol.
,
70
(
3
), pp.
511
516
.
28.
Beck
,
A.
,
Caps
,
R.
, and
Fricke
,
J.
,
1989
, “
Scattering of Visible Light From Silica Aerogels
,”
J. Phys. D: Appl. Phys.
,
22
(
6
), pp.
730
734
.
29.
Zeng
,
J. S. Q.
,
Greif
,
R.
,
Stevens
,
P.
,
Ayers
,
M.
, and
Hunt
,
A.
,
1996
, “
Effective Optical Constants n and k and Extinction Coefficient of Silica Aerogel
,”
J. Mater. Res.
,
11
(
03
), pp.
687
693
.
30.
Bellunato
,
T.
,
Calvi
,
M.
,
Matteuzzi
,
C.
,
Musy
,
M.
,
Perego
,
D. L.
, and
Storaci
,
B.
,
2007
, “
Refractive Index Dispersion Law of Silica Aerogel
,”
Eur. Phys. J. C
,
52
(
3
), pp.
759
764
.
31.
Bellunato
,
T.
,
Calvi
,
M.
,
Matteuzzi
,
C.
,
Musy
,
M.
,
Perego
,
D. L.
, and
Storaci
,
B.
,
2008
, “
Refractive Index of Silica Aerogel: Uniformity and Dispersion Law
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
595
(
1
), pp.
183
186
.
32.
Beck
,
A.
,
Korner
,
W.
, and
Fricke
,
J.
,
1994
, “
Optical Investigations of Granular Aerogel Fills
,”
J. Phys. D: Appl. Phys.
,
27
(
1
), pp.
13
18
.
33.
Wang
,
P.
,
Beck
,
A.
,
Korner
,
W.
,
Scheller
,
H.
, and
Fricke
,
J.
,
1994
, “
Density and Refractive Index of Silica Aerogels After Low- and High-Temperature Supercritical Drying and Thermal Treatment
,”
J. Phys. D: Appl. Phys.
,
27
(
2
), pp.
414
418
.
34.
Lee
,
H. J.
,
Bryson
,
A. C.
, and
Zhang
,
Z. M.
,
2007
, “
Measurement and Modeling of the Emittance of Silicon Wafers With Anisotropic Roughness
,”
Int. J. Thermophys.
,
28
(
3
), pp.
918
933
.
35.
Zhao
,
J. J.
,
Duan
,
Y. Y.
,
Wang
,
X. D.
,
Zhang
,
X. R.
,
Han
,
Y. H.
,
Gao
,
Y. B.
,
Lv
,
Z. H.
,
Yu
,
H. T.
, and
Wang
,
B. X.
,
2013
, “
Optical and Radiative Properties of Infrared Opacifier Particles Loaded in Silica Aerogels for High Temperature Thermal Insulation
,”
Int. J. Therm. Sci.
,
70
, pp.
54
64
.
36.
Fu
,
T. R.
,
Tang
,
J. Q.
,
Chen
,
K.
, and
Zhang
,
F.
,
2015
, “
Visible, Near-Infrared and Infrared Optical Properties of Silica Aerogels
,”
Infrared Phys. Technol.
,
71
, pp.
121
126
.
37.
Zhou
,
Y. H.
, and
Zhang
,
Z. M.
,
2003
, “
Radiative Properties of Semitransparent Silicon Wafers With Rough Surfaces
,”
ASME J. Heat Transfer
,
125
(3), pp.
462
470
.
38.
Lee
,
H. J.
,
Lee
,
B. J.
, and
Zhang
,
Z. M.
,
2005
, “
Modeling the Radiative Properties of Semitransparent Wafers With Rough Surfaces and Thin-Film Coatings
,”
J. Quant. Spectrosc. Radiat. Transfer
,
93
, pp.
185
194
.
39.
Dombrovsky
,
L.
,
Randrianalisoa
,
J.
, and
Baillis
,
D.
,
2006
, “
Modified Two-Flux Approximation for Identification of Radiative Properties of Absorbing and Scattering Media From Directional-Hemispherical Measurements
,”
J. Opt. Soc. Am. A
,
23
(
1
), pp.
91
98
.
40.
Dombrovsky
,
L. A.
,
Tagne
,
H. K.
,
Baillis
,
D.
, and
Gremillard
,
L.
,
2007
, “
Near-Infrared Radiative Properties of Porous Zirconia Ceramics
,”
Infrared Phys. Technol.
,
51
(
1
), pp.
44
53
.
41.
Li
,
Q.
,
Lee
,
B. J.
,
Zhang
,
Z. M.
, and
Allen
,
D. W.
,
2008
, “
Light Scattering of Semitransparent Sintered Polytetrafluoroethylene Films
,”
J. Biomed. Opt.
,
13
(
5
), p.
054064
.
42.
Eldridge
,
J. I.
, and
Spuckler
,
C. M.
,
2008
, “
Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
91
(
5
), pp.
1603
1611
.
43.
Eldridge
,
J. I.
,
Spuckler
,
C. M.
, and
Markham
,
J. R.
,
2009
, “
Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures
,”
J. Am. Ceram. Soc.
,
92
(
10
), pp.
2276
2285
.
44.
Lim
,
G.
, and
Kar
,
A.
,
2009
, “
Radiative Properties of Thermal Barrier Coatings at High Temperatures
,”
J. Phys. D: Appl. Phys.
,
42
(
15
), p.
155412
.
45.
Schöldström
,
J.
,
Zimmermann
,
U.
, and
Edoff
,
M.
,
2012
, “
Determination of the Optical Constants for Cu(In,Ga)Se2 and CuxSe in the IR Region
,”
J. Phys. D: Appl. Phys.
,
45
(
11
), p.
115101
.
46.
Zhang
,
Z. M.
, and
Wang
,
L. P.
,
2013
, “
Measurements and Modeling of the Spectral and Directional Radiative Properties of Micro/Nanostructured Materials
,”
Int. J. Thermophys.
,
34
(
12
), pp.
2209
2242
.
47.
Jung
,
E.
,
Lee
,
S.
,
Roh
,
S.
,
Hwang
,
E.
,
Lee
,
J.
,
Lee
,
H.
, and
Hwang
,
J.
,
2014
, “
Optical Properties of Graphite Oxide and Reduced Graphite Oxide
,”
J. Phys. D: Appl. Phys.
,
47
(
26
), p.
265306
.
48.
Zhang
,
B. J.
,
Wang
,
B. X.
, and
Zhao
,
C. Y.
,
2014
, “
Microstructural Effect on the Radiative Properties of YSZ Thermal Barrier Coatings (TBCs)
,”
Int. J. Heat Mass Transfer
,
73
, pp.
59
66
.
49.
Jones
,
A. R.
,
1981
, “
The Influence of Size and Refractive Index on the Emissivity of Clouds of Particles
,”
J. Phys. D: Appl. Phys.
,
14
(
2
), pp.
145
149
.
50.
Molenaar
,
R.
,
ten Bosch
,
J. J.
, and
Zijp
,
J. R.
,
1999
, “
Determination of Kubelka–Munk Scattering and Absorption Coefficients by Diffuse Illumination
,”
Appl. Opt.
,
38
(
10
), pp.
2068
2077
.
51.
Murphy
,
A. B.
,
2006
, “
Modified Kubelka–Munk Model for Calculation of the Reflectance of Coatings With Optically-Rough Surfaces
,”
J. Phys. D: Appl. Phys.
,
39
(
16
), pp.
3571
3581
.
52.
Wang
,
L.
,
Eldridge
,
J. I.
, and
Guo
,
S. M.
,
2014
, “
Comparison of Different Models for the Determination of the Absorption and Scattering Coefficients of Thermal Barrier Coatings
,”
Acta Mater.
,
64
, pp.
402
410
.
53.
Rousseau
,
B.
,
Brun
,
J. F.
,
Meneses
,
D. D.
, and
Echegut
,
P.
,
2005
, “
Temperature Measurement: Christiansen Wavelength and Blackbody Reference
,”
Int. J. Thermophys.
,
26
(
4
), pp.
1277
1286
.
You do not currently have access to this content.