Thermal management systems for space equipment commonly use static solutions that do not adapt to environmental changes. Dynamic control of radiative surface properties is one way to respond to environmental changes and to increase the capabilities of spacecraft thermal management systems. This paper documents an investigation of the extent to which origami-inspired surfaces may be used to control the apparent absorptivity of a reflective material. Models relating the apparent absorptivity of a radiation shield to time-dependent surface temperatures are presented. Results show that the apparent absorptivity increases with increasing fold density and indicate that origami-inspired designs may be used to control the apparent radiative properties of surfaces in thermal management systems.

References

References
1.
Mulford
,
R. B.
,
Christensen
,
L. G.
,
Jones
,
M. R.
, and
Iverson
,
B. D.
,
2014
, “
Dynamic Control of Radiative Surface Properties With Origami-Inspired Design
,”
ASME
Paper No. IMECE2014-39324.
2.
Gilmore
,
D. G.
,
1994
,
Spacecraft Thermal Control Handbook
,
2nd ed.
, Vol.
1
,
The Aerospace Corporation
,
El Segundo, CA
.
3.
Hill
,
S. A.
,
Kostyk
,
C.
,
Moril
,
B.
,
Notardonato
,
W.
,
Rickman
,
S.
, and
Swanson
,
T.
,
2012
,
Thermal Management Systems Roadmap, Technology Area 14
,
NASA
,
Washington, DC
.
4.
Gilmore
,
D. G.
,
2002
,
Spacecraft Thermal Control Handbook
,
2nd ed.
,
Aerospace Press
,
El Segundo, CA
.
5.
Grob
,
L. M.
, and
Swanson
,
T. D.
,
2000
, “
Parametric Study of Variable Emissivity Radiator Surfaces
,”
Space Technology and Applications International Forum
,
Albuquerque
,
NM
, pp.
809
814
.
6.
Akbari
,
H.
, and
Konopacki
,
S.
,
2004
, “
Energy Effects of Heat-Island Reduction Strategies in Toronto, Canada
,”
Energy
,
29
(
2
), pp.
191
210
.
7.
Beaupre
,
S.
,
Breton
,
A.-C.
,
Dumas
,
J.
, and
LeClerc
,
M.
,
2009
, “
Multicolored Electrochromic Cells Based on Poly Derivatives for Adaptive Camouflage
,”
Chem. Mater.
,
21
(
8
), pp.
1504
1513
.
8.
Li
,
M.
,
Sun
,
C. J.
,
Wang
,
R. Z.
, and
Cai
,
W. D.
,
2004
, “
Development of No Valve Solar Ice Maker
,”
Appl. Therm. Eng.
,
24
(
5–6
), pp.
865
872
.
9.
Anyanwu
,
E. E.
, and
Ogueke
,
N. V.
,
2007
, “
Transient Analysis and Performance Prediction of a Solid Adsorption Solar Refrigerator
,”
Appl. Therm. Eng.
,
27
(
14–15
), pp.
2514
2523
.
10.
Shannon
,
K. C.
,
Sheets
,
J.
,
Groger
,
H.
,
Storm
,
R.
, and
Williams
,
A.
,
2008
, “
Thermal Management Integration Using Plug and Play Variable Emissivity Devices
,”
AIAA
Paper No. 2008-1961.
11.
Baturkin
,
V.
,
2005
, “
Micro-Satellites Thermal Control—Concepts and Components
,”
Acta Astronaut.
,
56
(
1–2
), pp.
161
170
.
12.
Hale
,
J. S.
,
DeVries
,
M.
,
Dworak
,
B.
, and
Woollam
,
J. A.
,
1998
, “
Visible and Infrared Optical Constants of Electrochromic Materials for Emissivity Modulation Applications
,”
Thin Solid Films
,
313–314
, pp.
205
209
.
13.
Gong
,
J.
,
Cha
,
G.
,
Ju
,
Y. S.
, and
Kim
,
C.-J.
,
2008
, “
Thermal Switches Based on Coplanar EWOD for Satellite Thermal Control
,”
IEEE International Conference on Micro Electro Mechanical Systems
,
Tucson
,
AZ
, Jan.
13
17
, pp. 848–851.
14.
Biter
,
W.
,
Hess
,
S.
,
Oh
,
S.
,
Douglas
,
D.
, and
Swanson
,
T.
,
2005
, “
Electrostatic Radiator for Satellite Temperature Control
,”
IEEE
Aerospace Conference
,
Big Sky
,
MT
, Mar.
5
12
, pp.
781
790
.
15.
Bergeron
,
B. V.
,
White
,
K. C.
,
Boehme
,
J. L.
,
Gelb
,
A. H.
, and
Joshi
,
P. B.
,
2008
, “
Variable Absorptance and Emittance Devices for Thermal Control
,”
J. Phys. Chem.
,
112
(
3
), pp.
832
838
.
16.
Demiryont
,
H.
, and
Moorehead
,
D.
,
2009
, “
Electrochromic Emissivity Modulator for Spacecraft Thermal Management
,”
Sol. Energy Mater. Sol. Cells
,
93
(
12
), pp.
2075
2078
.
17.
Benkahoul
,
M.
,
Chaker
,
M.
,
Margot
,
J.
,
Haddad
,
E.
,
Kruzelecky
,
R.
,
Wong
,
B.
,
Jamroz
,
W.
, and
Poinas
,
P.
,
2011
, “
Thermochromic VO2 Film Deposited on Al With Tunable Thermal Emissivity for Space Applications
,”
Sol. Energy Mater. Sol. Cells
,
95
(
12
), pp.
3504
3508
.
18.
Adjim
,
M.
,
Pillai
,
R.
,
Bensaoula
,
A.
,
Starikov
,
D.
,
Boney
,
C.
, and
Saidane
,
A.
,
2007
, “
Thermal Analysis of Micro-Column Arrays for Tailored Temperature Control in Space
,”
ASME J. Heat Transfer
,
129
(
7
), pp.
798
804
.
19.
Dannelley
,
D.
, and
Baker
,
J.
,
2013
, “
Radiant Fin Performance Using Fractal-Like Geometries
,”
ASME J. Heat Transfer
,
135
(
8
), p.
081902
.
20.
Sparrow
,
E. M.
, and
Lin
,
S. H.
,
1962
, “
Absorption of Thermal Radiation in a V-Groove Cavity
,”
Int. J. Heat Mass Transfer
,
5
(
11
), pp.
1111
1115
.
21.
Sparrow
,
E. M.
, and
Cess
,
R. D.
,
1978
,
Radiation Heat Transfer
,
McGraw-Hill
,
New York
.
22.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
3rd ed.
,
Academic Press
,
New York
.
23.
Miura
,
M.
,
2002
, “
The Application of Origami Science to Map and Atlas Design
,”
Origami 3: Third International Meeting of Origami Science, Mathematics, and Education
,
T.
Hull
, ed.,
CRC Press
, Natick, MA, pp.
137
146
.
24.
Okuzaki
,
H.
,
Saido
,
T.
,
Suzuki
,
H.
,
Hara
,
Y.
, and
Yan
,
H.
,
2008
, “
A Biomorphic Origami Actuator Fabricated by Folding a Conducting Paper
,”
J. Phys.: Conf. Ser.
,
127
, p.
012001
.
25.
Jackson
,
P.
,
2011
,
Folding Techniques for Designers
,
Laurence King Publishing
,
London
.
26.
Greenberg
,
H. C.
,
Gong
,
M. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2011
, “
Identifying Links Between Origami and Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
217
225
.
27.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
.
28.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
29.
Black
,
W. Z.
, and
Schoenhals
,
R. J.
,
1968
, “
A Study of Directional Radiation Properties of Specially Prepared V-Groove Cavities
,”
ASME J. Heat Transfer
,
90
(
4
), pp.
420
428
.
30.
Daws
,
L. F.
,
1953
, “
The Emissivity of a Groove
,”
Br. J. Appl. Phys.
,
5
, pp.
182
187
.
31.
Masuda
,
H.
,
1980
, “
Directional Control of Radiation Heat Transfer by V-Groove Cavities—Collimation of Energy in Direction Normal to Opening
,”
ASME J. Heat Transfer
,
102
(
3
), pp.
563
567
.
32.
Zipin
,
R. B.
,
1966
, “
The Apparent Thermal Radiation Properties of an Isothermal V-Groove With Specularly Reflecting Walls
,”
J. Res. Natl. Bureau Standards,
70c
(
4
), pp.
275
280
.
33.
Sparrow
,
E. M.
,
Gregg
,
J. L.
,
Svel
,
J. V.
, and
Manos
,
P.
,
1961
, “
Analysis, Results and Interpretation for Radiation Between Some Simply-Arranged Gray Surfaces
,”
ASME J. Heat Transfer
,
83
(
2
), pp.
207
214
.
34.
Boyer
,
H. E.
, and
Gall
,
T. L.
,
1985
,
Metals Handbook
,
1 ed.
,
American Society for Metals
,
Metals Park, OH
.
You do not currently have access to this content.