There is a clear need for cooling high heat flux generating electronic devices using a dielectric fluid without using a pump. This paper explores the feasibility of employing ethanol as a dielectric fluid in a horizontal, open microchannel heat sink configuration with a tapered gap manifold to yield very low pressure head requirements. The paper presents experimental results for such a system utilizing ethanol as a working fluid under gravity-driven flow. A heat flux of 217 W/cm2 was dissipated with a pressure drop of only 9 kPa. The paper further presents parametric trends regarding flow rate and pressure drop characteristics that provide basic insight into designing high heat flux systems under a given gravity head requirement. Based on the results, interrelationships and design guidelines are developed for the taper, ethanol flow rate and imposed heat flux on heat transfer coefficient and gravity head requirement for electronics cooling. Reducing flow instability, reducing pressure drop, and enhancing heat transfer performance for a dielectric fluid will enable the development of pumpless cooling solutions in a variety of electronics cooling applications.

References

References
1.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2
), pp.
389
407
.
2.
Balasubramanian
,
P.
, and
Kandlikar
,
S. G.
,
2005
, “
Experimental Study of Flow Patterns, Pressure Drop, and Flow Instabilities in Parallel Rectangular Minichannels
,”
Heat Transfer Eng.
,
26
(
3
), pp.
20
27
.
3.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2005
, “
Numerical Study of the Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
ASME
Paper No. ICMM2005-75143.
4.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2755
2771
.
5.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2005
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
389
396
.
6.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2007
, “
Local Measurement of Flow Boiling in Structured Surface Microchannels
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4513
4526
.
7.
Kosar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2005
, “
Boiling Heat Transfer in Rectangular Microchannels With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4867
4886
.
8.
Kosar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2006
, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
251
260
.
9.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
,
130
(
7
), p.
072402
.
10.
Lu
,
C. T.
, and
Pan
,
C.
,
2011
, “
Convective Boiling in a Parallel Microchannel Heat Sink With a Diverging Cross Section and Artificial Nucleation Sites
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
810
815
.
11.
Miner
,
M. J.
,
Phelan
,
P. E.
,
Odom
,
B. A.
,
Ortiz
,
C. A.
,
Sherbeck
,
J. A.
, and
Prasher
,
R. S.
,
2011
, “
Optimized Expanding Microchannel Geometry for Flow Boiling
,”
ASME 2011 International Mechanical Engineering Congress and Exposition (IMECE)
, Nov. 11–17,
American Society of Mechanical Engineers
,
New York
, pp.
835
841
.
12.
Kandlikar
,
S. G.
,
Widger
,
T.
,
Kalani
,
A.
, and
Mejia
,
V.
,
2013
, “
Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Manifolds
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061401
.
13.
Balasubramanian
,
K.
,
Lee
,
P. S.
,
Jin
,
L. W.
,
Chou
,
S. K.
,
Teo
,
C. J.
, and
Gao
,
S.
,
2011
, “
Enhanced Heat Transfer and Reduced Pressure Drop Using Stepped Fin Microchannels
,”
IEEE 13th Electronics Packaging Technology Conference
(
EPTC
), Dec. 7–9,
IEEE Computer Society
,
Washington, DC
, pp.
653
659
.
14.
Miner
,
M. J.
,
Phelan
,
P. E.
,
Odom
,
B. A.
, and
Ortiz
,
C. A.
,
2014
, “
An Experimental Investigation of Pressure Drop in Expanding Microchannel Arrays
,”
ASME J. Heat Transfer
,
136
(
3
), p.
031502
.
15.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2014
, “
Evaluation of Pressure Drop Performance During Enhanced Flow Boiling in Open Microchannels With Tapered Manifolds
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051502
.
16.
Fazeli
,
A.
,
Mortazavi
,
M.
, and
Moghaddam
,
S.
,
2015
, “
Hierarchical Biphilic Micro/Nanostructures for a New Generation Phase-Change Heat Sink
,”
Appl. Therm. Eng.
,
78
, pp.
380
386
.
17.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2013
, “
Experimental Investigation of Flow Boiling Performance of Open Microchannels With Uniform and Tapered Manifolds (OMM)
,”
ASME
Paper No. HT2013-17441.
18.
Lee
,
Y.
, and
Mital
,
U.
,
1972
, “
A Two-Phase Closed Thermosyphon
,”
Int. J. Heat Mass Transfer
,
15
(
9
), pp.
1695
1707
.
19.
Noie
,
S. H.
,
2005
, “
Heat Transfer Characteristics of a Two-Phase Closed Thermosyphon
,”
Appl. Therm. Eng.
,
25
(
4
), pp.
495
506
.
20.
Imura
,
H.
,
Sasaguchi
,
K.
,
Kozai
,
H.
, and
Numata
,
S.
,
1983
, “
Critical Heat Flux in a Closed Two-Phase Thermosyphon
,”
Int. J. Heat Mass Transfer
,
26
(
8
), pp.
1181
1188
.
21.
Khodabandeh
,
R.
, and
Palm
,
B.
,
2002
, “
Influence of System Pressure on the Boiling Heat Transfer Coefficient in a Closed Two-Phase Thermosyphon Loop
,”
Int. J. Therm. Sci.
,
41
(
7
), pp.
619
624
.
22.
Khodabandeh
,
R.
,
2004
, “
Thermal Performance of a Closed Advanced Two-Phase Thermosyphon Loop for Cooling of Radio Base Stations at Different Operating Conditions
,”
Appl. Therm. Eng.
,
24
(
17
), pp.
2643
2655
.
23.
Khodabandeh
,
R.
,
2005
, “
Heat Transfer in the Evaporator of an Advanced Two-Phase Thermosyphon Loop
,”
Int. J. Refrig.
,
28
(
2
), pp.
190
202
.
24.
Khodabandeh
,
R.
,
2005
, “
Pressure Drop in Riser and Evaporator in an Advanced Two-Phase Thermosyphon Loop
,”
Int. J. Refrig.
,
28
(
5
), pp.
725
734
.
25.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2013
, “
Enhanced Pool Boiling With Ethanol at Subatmospheric Pressures for Electronics Cooling
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111002
.
26.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
,
2006
, “
Periodic Boiling in Parallel Micro-Channels at Low Vapor Quality
,”
Int. J. Multiphase Flow
,
32
(
10
), pp.
1141
1159
.
27.
Diaz
,
M. C.
, and
Schmidt
,
J.
,
2007
, “
Experimental Investigation of Transient Boiling Heat Transfer in Microchannels
,”
Int. J. Heat Fluid Flow
,
28
(
1
), pp.
95
102
.
28.
Fu
,
B. R.
,
Tsou
,
M. S.
, and
Pan
,
C.
,
2012
, “
Boiling Heat Transfer and Critical Heat Flux of Ethanol–Water Mixtures Flowing Through a Diverging Microchannel With Artificial Cavities
,”
Int. J. Heat Mass Transfer
,
55
(
5
), pp.
1807
1814
.
29.
Battino
,
R.
,
Rettich
,
T. R.
, and
Tominaga
,
T.
,
1983
, “
The Solubility of Oxygen and Ozone in Liquids
,”
J. Phys. Chem. Ref. Data
,
12
(
2
), pp.
163
178
.
30.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Effect of Taper on Pressure Recovery During Flow Boiling in Open Microchannels With Manifold Using Homogeneous Flow Model
,”
Int. J. Heat Mass Transfer
,
83
, pp.
109
117
.
You do not currently have access to this content.