In our efforts to improve the pool boiling heat transfer of water, three sets of experiments are carried out to investigate the best coolant for heat removal among alumina, silica, and zinc oxide as nanoparticles and water as base fluid: (a) pool boiling heat transfer of γ-alumina/water nanofluid with and without surfactant in both distilled water and treated water as base fluids, (b) pool boiling heat transfer of silica/water nanofluid with two different nanoparticle sizes, and (c) pool boiling heat transfer of zinc oxide/water nanofluid with surfactant. In all the above experiments, the effect of heater surface on boiling heat transfer coefficient has been investigated by repeating the experiment using pure water on the coated surface before cleaning it. Moreover, two effective thermophysical properties of fluids, dynamic viscosity and surface tension, are measured to explain the boiling behavior of the nanofluids. The experimental results indicate that (a) the presence of γ-alumina in the base fluid enhances the pool boiling heat transfer coefficient, but sodium dodecyl sulphate (SDS) as surfactant deteriorates the performance of pool boiling heat transfer of γ-alumina/water nanofluid and (b) silica nanoparticles reduce the boiling performance of pure water. Moreover, the larger particle size of silica nanoparticles shows less reduction in heat transfer coefficient, (c) zinc oxide/water nanofluid is the best coolant among all the above-mentioned nanoparticles for heat removal.

References

References
1.
Cho
,
H. J.
,
Sresht
,
V.
,
Blankschtein
,
D.
, and
Wang
,
E. N.
,
2013
, “
Understanding Enhanced Boiling With Triton X Surfactants
,”
ASME
Paper No. HT2013-17497.
2.
Chol
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME-Publ. Fed.
,
231
, pp.
99
106
.
3.
Sadhu
,
S.
, and
Ghoshdastidar
,
P.
,
2015
, “
Heat Flux Controlled Pool Boiling of Zirconia–Water and Silver–Water Nanofluids on a Flat Plate: A Coupled Map Lattice Simulation
,”
ASME J. Heat Transfer
,
137
(
2
), p.
021503
.
4.
Yang
,
Y. M.
, and
Maa
,
J. R.
,
1984
, “
Boiling of Suspension of Solid Particles in Water
,”
Int. J. Heat Mass Transfer
,
27
(
1
), pp.
145
147
.
5.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
851
862
.
6.
Vassallo
,
P.
,
Kumar
,
R.
, and
D'Amico
,
S.
,
2004
, “
Pool Boiling Heat Transfer Experiments in Silica–Water Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
407
411
.
7.
Marto
,
P.
, and
Lepere
,
V.
,
1982
, “
Pool Boiling Heat Transfer From Enhanced Surfaces to Dielectric Fluids
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
292
299
.
8.
Tong
,
L. S.
, and
Tang
,
Y. S.
,
1997
,
Boiling Heat Transfer and Two-Phase Flow
,
Taylor & Francis
,
Washington, DC
.
9.
Sulaiman
,
M. Z.
,
Takamura
,
M.
,
Nakahashi
,
K.
, and
Okawa
,
T.
,
2013
, “
Boiling Heat Transfer and Critical Heat Flux Enhancement of Upward- and Downward-Facing Heater in Nanofluids
,”
ASME J. Eng. Gas Turbines Power
,
135
(
7
), p.
072901
.
10.
Kwark
,
S. M.
,
Kumar
,
R.
,
Moreno
,
G.
, and
You
,
S. M.
,
2012
, “
Transient Characteristics of Pool Boiling Heat Transfer in Nanofluids
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051015
.
11.
Kedzierski
,
M. A.
,
1996
, “
Enhancement of R-123 Pool Boiling by the Addition of n-Hexane
,” Building and Fire Research Laboratory, NIST, Gaithersburg, MD.
12.
Murshed
,
S. S.
,
Milanova
,
D.
, and
Kumar
,
R.
,
2009
, “
An Experimental Study of Surface Tension-Dependent Pool Boiling Characteristics of Carbon Nanotubes–Nanofluids
,”
ASME
Paper No. ICNMM2009-82204.
13.
Zhou
,
L.
,
Wei
,
L.
, and
Du
,
X.
,
2013
, “
Subcooled Nucleate Boiling of Alumina Nanofluid With/Without n-Butanol as Surfactant
,”
ASME
Paper No. HT2013-17754.
14.
Wasekar
,
V. M.
,
2001
, “
Nucleate Pool Boiling Heat Transfer in Aqueous Surfactant Solutions
,”
Ph.D. dissertation
, University of Cincinnati, Cincinnati, OH.
15.
Al-Sabagh
,
A.
,
Azzam
,
E.
,
Nasser
,
N.
, and
El-Shafey
,
A.
,
2009
, “
Investigation Static/Dynamic Surface and Interfacial Tension of Some Synthesized Polymeric Surfactants to Enhance the Egyptian Jet Fuel A1 Atomization
,”
J. Dispersion Sci. Technol.
,
30
(
4
), pp.
520
528
.
16.
Zhang
,
J.
,
2004
, “
Experimental and Computational Study of Nucleate Pool Boiling Heat Transfer in Aqueous Surfactant and Polymer Solutions
,”
Ph.D. dissertation
, University of Cincinnati, Cincinnati, OH.
17.
Gowda
,
R.
,
Sun
,
H.
,
Wang
,
P.
,
Charmchi
,
M.
,
Gao
,
F.
,
Gu
,
Z.
, and
Budhlall
,
B.
,
2010
, “
Effects of Particle Surface Charge, Species, Concentration, and Dispersion Method on the Thermal Conductivity of Nanofluids
,”
Adv. Mech. Eng.
,
2
, p. 807610.
18.
Ammerman
,
C.
, and
You
,
S.
,
1996
, “
Determination of the Boiling Enhancement Mechanism Caused by Surfactant Addition to Water
,”
ASME J. Heat Transfer
,
118
(
2
), pp.
429
435
.
19.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat mass Transfer
,
47
(
24
), pp.
5181
5188
.
20.
Kole
,
M.
, and
Dey
,
T.
,
2010
, “
Thermal Conductivity and Viscosity of Al2O3 Nanofluid Based on Car Engine Coolant
,”
J. Phys. D: Appl. Phys.
,
43
(
31
), p.
315501
.
21.
Kathiravan
,
R.
,
Kumar
,
R.
,
Gupta
,
A.
,
Chandra
,
R.
, and
Jain
,
P.
,
2011
, “
Pool Boiling Characteristics of Multiwalled Carbon Nanotube (CNT) Based Nanofluids Over a Flat Plate Heater
,”
Int. J. Heat Mass Transfer
,
54
(
5
), pp.
1289
1296
.
22.
Kathiravan
,
R.
,
Kumar
,
R.
,
Gupta
,
A.
, and
Chandra
,
R.
,
2010
, “
Preparation and Pool Boiling Characteristics of Copper Nanofluids Over a Flat Plate Heater
,”
Int. J. Heat Mass Transfer
,
53
(
9
), pp.
1673
1681
.
23.
Shoghl
,
S. N.
, and
Bahramim
,
M.
,
2013
, “
Experimental Investigation on Pool Boiling Heat Transfer of ZnO, and CuO Water-Based Nanofluids and Effect of Surfactant on Heat Transfer Coefficient
,”
Int. Commun. Heat Mass Transfer
,
45
, pp.
122
129
.
24.
Shanbedi
,
M.
,
Heris
,
S. Z.
,
Amiri
,
A.
, and
Baniadam
,
M.
,
2014
, “
Improvement in Heat Transfer of a Two-Phased Closed Thermosyphon Using Silver-Decorated MWCNT/Water
,”
J. Dispersion Sci. Technol.
,
35
(
8
), pp.
1086
1096
.
25.
Verma
,
U.
,
Manglik
,
R.
, and
Jog
,
M.
,
2011
, “
Experimental Study of Effects of Interfacial Properties on Nucleate Pool Boiling in Water
,”
ASME
Paper No. IMECE2011-62740.
26.
Narayan
,
G. P.
,
Anoop
,
K.
, and
Das
,
S. K.
,
2007
, “
Mechanism of Enhancement/Deterioration of Boiling Heat Transfer Using Stable Nanoparticle Suspensions Over Vertical Tubes
,”
J. Appl. Phys.
,
102
(
7
), p.
074317
.
27.
Wen
,
D.
,
2012
, “
Influence of Nanoparticles on Boiling Heat Transfer
,”
Appl. Therm. Eng.
,
41
, pp.
2
9
.
28.
Hu
,
H.
,
Peng
,
H.
, and
Ding
,
G.
,
2013
, “
Nucleate Pool Boiling Heat Transfer Characteristics of Refrigerant/Nanolubricant Mixture With Surfactant
,”
Int. J. Refrig.
,
36
(
3
), pp.
1045
1055
.
29.
Sarafraz
,
M.
, and
Hormozi
,
F.
,
2014
, “
Nucleate Pool Boiling Heat Transfer Characteristics of Dilute Al2O3–Ethyleneglycol Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
58
, pp.
96
104
.
30.
Ahmadi
,
H.
,
2012
, “
Experimental Investigation on Heat Transfer Phenomena in Nanofluid
,” M.Sc. thesis, Petroleum University of Technology, Tehran, Iran.
31.
Jamialahmadi
,
M.
,
Helalizadeh
,
A.
, and
Müller-Steinhagen
,
H.
,
2004
, “
Pool Boiling Heat Transfer to Electrolyte Solutions
,”
Int. J. Heat mass Transfer
,
47
(
4
), pp.
729
742
.
32.
Feldmann
,
H.
, and
Luke
,
A.
,
2008
, “
Nucleate Boiling in Water for Different Pressures
,”
International Refrigation and Air Conditioning Conference
.
33.
Hetsroni
,
G.
,
Zakin
,
J.
,
Lin
,
Z.
,
Mosyak
,
A.
,
Pancallo
,
E.
, and
Rozenblit
,
R.
,
2000
, “
The Effect of Surfactants on Bubble Growth, Wall Thermal Patterns and Heat Transfer in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
44
(
2
), pp.
485
497
.
34.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2009
, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121009
.
35.
Wu
,
W.-T.
,
Yang
,
Y.-M.
, and
Maa
,
J.-R.
,
1999
, “
Technical Note Pool Boiling Incipience and Vapor Bubble Growth Dynamics in Surfactant Solutions
,”
Int. J. Heat Mass Transfer
,
42
(
13
), pp.
2483
2488
.
36.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
37.
White
,
S. B.
,
Shih
,
A. J.
, and
Pipe
,
K. P.
,
2010
, “
Effects of Nanoparticle Layering on Nanofluid and Base Fluid Pool Boiling Heat Transfer From a Horizontal Surface Under Atmospheric Pressure
,”
J. Appl. Phys.
,
107
(
11
), p.
114302
.
38.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
,
Wiley
,
Hoboken, NJ
.
39.
Milanova
,
D.
, and
Kumar
,
R.
,
2005
, “
Role of Ions in Pool Boiling Heat Transfer of Pure and Silica Nanofluids
,”
Appl. Phys. Lett.
,
87
(
23
), p.
233107
.
You do not currently have access to this content.