We consider the heat transfer problem associated with a periodic array of rectangular fins subjected to convection heat transfer with a uniform heat transfer coefficient. Our analysis differs from the classical approach as (i) we consider two-dimensional (2D) heat conduction and (ii) the wall, to which the fins are attached, is included in the analysis. The problem is modeled as a 2D channel whose upper surface is flat and isothermal, while the lower surface has a periodic array of rectangular extensions/fins which are subjected to heat convection. The Biot number (Bi=h t/k) characterizing the heat transfer process is defined with respect to the thickness of the fins (t). Numerical results suggest that the fins would enhance the heat transfer rate only if the Biot number is less than a critical value which is independent of the thickness of the wall, the length of the fins, and the period; the critical Biot number is approximately equal to 1.64. The optimum fins are infinitely thin and long, and densely packed, i.e., hairlike.

References

References
1.
Lavrentev
,
M. A.
, and
Shabat
,
B. A.
,
2001
,
Theoretical Methods of Functions of Complex Variables
,
Nauka
,
Moscow
, p.
1789
.
2.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1990
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
3.
Kraus
,
A. D.
,
Aziz
,
A.
, and
Welty
,
J.
,
2001
,
Extended Surface Heat Transfer
,
Wiley
,
Hoboken, NJ
.
4.
Holmes
,
M. H.
,
2013
,
Introduction to Perturbation Methods
,
Springer-Verlag
,
New York
.
5.
Fyrillas
,
M. M.
, and
Szeri
,
A. J.
,
1994
, “
Dissolution or Growth of Soluble, Spherical, Oscillating Bubbles
,”
J. Fluid Mech.
,
277
, pp.
381
407
.
6.
Fyrillas
,
M. M.
, and
Szeri
,
A. J.
,
1995
, “
Dissolution or Growth of Soluble, Spherical, Oscillating Bubbles: The Effect of Surfactants
,”
J. Fluid Mech.
,
289
, pp.
295
314
.
7.
Fyrillas
,
M. M.
, and
Szeri
,
A. J.
,
1995
, “
Surfactant Dynamics and Rectified Diffusion of Microbubbles
,”
J. Fluid Mech.
,
311
, pp.
361
378
.
8.
Stone
,
H. A.
,
1989
, “
Heat/Mass Transfer From Surface Films to Shear Flows at Arbitrary Peclet Numbers
,”
Phys. Fluids A
,
1
(
7
), pp.
1112
1122
.
9.
Fyrillas
,
M. M.
,
2000
, “
Advection-Dispersion Mass Transport Associated With a Non-Aqueous-Phase Liquid Pool
,”
J. Fluid Mech.
,
413
, pp.
49
63
.
10.
Leontiou
,
T.
, and
Fyrillas
,
M. M.
,
2014
, “
Shape Optimization With Isoperimetric Constraints for Isothermal Pipes Embedded in an Insulated Slab
,”
ASME J. Heat Transfer
,
136
(
9
), p.
94502
.
11.
Fyrillas
,
M. M.
, and
Kontoghiorghes
,
E. J.
,
2004
, “
Numerical Calculation of Mass Transfer From Elliptical Pools in Uniform Flow Using the Boundary Element Method
,”
Transp. Porous Media
,
55
(
1
), pp.
91
102
.
12.
Ioannou
,
Y.
,
Fyrillas
,
M. M.
, and
Doumanidis
,
H.
,
2012
, “
Approximate Solution to Fredholm Integral Equations Using Linear Regression and Applications to Heat and Mass Transfer
,”
Eng. Anal. Boundary Elem.
,
36
(
8
), pp.
1278
1283
.
13.
Fyrillas
,
M. M.
, and
Stone
,
H. A.
,
2011
, “
Critical Insulation Thickness of a Slab Embedded With a Periodic Array of Isothermal Strips
,”
Int. J. Heat Mass Transfer,
54
(
1–3
), pp.
180
185
.
14.
Sahin
,
A.
,
2012
, “
Critical Insulation Thickness for Maximum Entropy Generation
,”
Int. J. Exergy
,
10
(
1
), pp.
34
43
.
15.
Fyrillas
,
M. M.
, and
Pozrikidis
,
C.
,
2001
, “
Conductive Heat Transport Across Rough Surfaces and Interfaces Between Two Conforming Media
,”
Int. J. Heat Mass Transfer
,
44
(
9
), pp.
1789
1801
.
16.
Brady
,
M.
, and
Pozrikidis
,
C.
,
1993
, “
Diffusive Transport Across Irregular and Fractal Walls
,”
Proc. R. Soc. London, Ser. A
,
442
(
1916
), pp.
571
583
.
17.
Leontiou
,
T.
,
Kotsonis
,
M.
, and
Fyrillas
,
M. M.
,
2013
, “
Optimum Isothermal Surfaces That Maximize Heat Transfer
,”
Int. J. Heat Mass Transfer
,
63
, pp.
13
19
.
18.
Mazloomi
,
A.
,
Sharifi
,
F.
,
Salimpour
,
M. R.
, and
Moosavi
,
A.
,
2012
, “
Optimization of Highly Conductive Insert Architecture for Cooling a Rectangular Chip
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1265
1271
.
19.
Ganzelves
,
F. L. A.
, and
van der Geld
,
C. W. M.
,
1997
, “
The Shape Factor of Conduction in a Multiple Channel Slab and the Effect Non-Uniform Temperature
,”
Int. J. Heat Mass Transfer
,
40
(
10
), pp.
2493
2498
.
20.
Bobaru
,
F.
, and
Rachakonda
,
S.
,
2004
, “
Optimal Shape Profiles for Cooling Fins of High and Low Conductivity
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
4953
4966
.
21.
Moharana
,
M. K.
, and
Das
,
P. K.
,
2008
, “
Heat Conduction Through Heat Exchanger Tubes of Noncircular Cross Section
,”
ASME J. Heat Transfer
,
130
(
1
), p.
011301
.
22.
Kundu
,
B.
, and
Das
,
P. K.
,
2005
, “
Optimum Profile of Thin Fins With Volumetric Heat Generation: A Unified Approach
,”
ASME J. Heat Transfer
,
127
(
8
), pp.
945
948
.
23.
Aziz
,
A.
,
1992
, “
Optimum Dimensions of Extended Surfaces Operating in a Convective Environment
,”
ASME Appl. Mech. Rev.
,
45
(5), pp.
155
173
.
24.
COMSOL
,
2008
,
Heat Transfer Module: COMSOL Multiphysics User’s Guide
, Version 3.4,
COMSOL AB
,
Stockholm, Sweden
.
25.
Fyrillas
,
M. M.
,
2009
, “
Shape Optimization for 2D Diffusive Scalar Transport
,”
Optim. Eng.
,
10
(
4
), pp.
477
489
.
26.
Fyrillas
,
M. M.
,
2008
, “
Heat Conduction in a Solid Slab Embedded With a Pipe of General Cross-Section: Shape Factor and Shape Optimization
,”
Int. J. Eng. Sci.
,
46
(
9
), pp.
907
916
.
27.
Fyrillas
,
M. M.
,
2010
, “
Shape Factor and Shape Optimization for a Periodic Array of Isothermal Pipes
,”
Int. J. Heat Mass Transfer,
53
(
5–6
), pp.
982
989
.
28.
Leontiou
,
T.
, and
Fyrillas
,
M. M.
,
2015
, “
Critical Thickness of an Optimum Extended Surface Characterized by Uniform Heat Transfer Coefficient
,” e-print arXiv:1503.05148 [physics.class-ph].
You do not currently have access to this content.