The knowledge of thermal transport characteristics is of primary importance in the application of foams. The thermal characteristics of a foam heavily depend on its microstructure and, therefore, have to be investigated at a pore level. However, this analysis is a challenging task, because of the complex geometry of a foam. The use of foam models is a promising tool in their study. The Kelvin and the Weaire–Phelan foam models, among the most representative practical foam models, are used in this paper to numerically investigate heat transfer and pressure drop in metallic foams. They are developed in the “surface evolver” open source software. Mass, momentum, and energy equations, for air forced convection in open cell foams, are solved with a finite-element method, for different values of cell size and porosity. Heat transfer and pressure drop results are reported in terms of volumetric Nusselt number and Darcy–Weisbach friction factor, respectively. Finally, a comparison between the numerical predictions obtained with the two foam models is carried out, in order to evaluate the feasibility to substitute the more complex and computationally heavier Weaire–Phelan foam structure with the simpler Kelvin foam representation. Negligible differences between the two models are exhibited at high porosities.

References

References
1.
Whitaker
,
S.
,
1967
, “
Diffusion and Dispersion in Porous Media
,”
AIChE J.
,
13
(
3
), pp.
420
427
.
2.
Slattery
,
J. C.
,
1967
, “
Flow of Viscoelastic Fluids Through Porous Media
,”
AlChE J.
,
13
(
6
), pp.
1066
1071
.
3.
Younis
,
L. B.
, and
Viskanta
,
R.
,
1993
, “
Experimental Determination of the Volumetric Heat Transfer Coefficient Between Stream of Air and Ceramic Foam
,”
Int. J. Heat Mass Transfer
,
36
(
6
), pp.
1425
1434
.
4.
Hwang
,
J.-J.
,
Hwang
,
G.-J.
,
Chao
,
C.-H.
, and
Yeh
,
R.-H.
,
2001
, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
120
129
.
5.
Dietrich
,
B.
,
2013
, “
Heat Transfer Coefficients for Solid Ceramic Sponges—Experimental Results and Correlation
,”
Int. J. Heat Mass Transfer
,
61
, pp.
627
637
.
6.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.
7.
Fuller
,
A. J.
,
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2005
, “
Measurement and Interpretation of the Heat Transfer Coefficients of Metal Foams
,”
Proc. Inst. Mech. Eng., Part C
,
219
(
2
), pp.
183
191
.
8.
Ji
,
X.
, and
Xu
,
J.
,
2012
, “
Experimental Study on the Two-Phase Pressure Drop in Copper Foams
,”
Heat Mass Transfer
,
48
(
1
), pp.
153
164
.
9.
Haussener
,
S.
,
Coray
,
P.
,
Lipinski
,
W.
,
Wyss
,
P.
, and
Steinfeld
,
A.
,
2009
, “
Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing
,”
ASME J. Heat Transfer
,
132
(
2
), p.
023305
.
10.
Plateau
,
J. A. F.
,
1873
,
Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires
,
Gauthier-Villars
,
Paris, FR
.
11.
Lord Kelvin (Sir William Thomson)
,
1887
, “
On the Division of Space With Minimum Partitional Area
,”
Acta Math.
,
11
(
1–4
), pp.
121
134
.
12.
Weaire
,
D.
, and
Phelan
,
R.
,
1994
, “
A Counter-Example to Kelvin's Conjecture on Minimal Surfaces
,”
Philos. Mag. Lett.
,
69
(
2
), pp.
107
110
.
13.
Du Plessis
,
J. P.
, and
Masliyah
,
J. H.
,
1988
, “
Mathematical Modelling of Flow Through Consolidated Isotropic Porous Media
,”
Transport Porous Med.
,
3
(
2
), pp.
145
161
.
14.
Du Plessis
,
J. P.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
,
1994
, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
,
49
(
21
), pp.
3545
3553
.
15.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.
16.
Huu
,
T. T.
,
Lacroix
,
M.
,
Huu
,
C. P.
,
Schweich
,
D.
, and
Edouard
,
D.
,
2009
, “
Towards a More Realistic Modeling of Solid Foam: Use of the Pentagonal Dodecahedron Geometry
,”
Chem. Eng. Sci.
,
64
(
24
), pp.
5131
5142
.
17.
Patel
,
M. R.
, and
Finnie
,
I.
,
1970
, “
Structural Features and Mechanical Properties of Rigid Cellular Plastics
,”
J. Mater.
,
5
, pp.
909
932
.
18.
Richardson
,
J. T.
,
Peng
,
Y.
, and
Remue
,
D.
,
2000
, “
Properties of Ceramic Foam Catalyst Supports: Pressure Drop
,”
Appl. Catal. A
,
204
(
1
), pp.
19
32
.
19.
Bai
,
M.
, and
Chung
,
J. N.
,
2011
, “
Analytical and Numerical Prediction of Heat Transfer and Pressure Drop in Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
869
880
.
20.
Wu
,
Z.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z.
,
2011
, “
Numerical Simulation of Convective Heat Transfer Between Air Flow and Ceramic Foams to Optimize Volumetric Solar Air Receiver Performances
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1527
1537
.
21.
Wu
,
Z.
,
Caliot
,
C.
,
Bai
,
F.
,
Flamant
,
G.
,
Wang
,
Z.
,
Zhang
,
J.
, and
Tian
,
C.
,
2010
, “
Experimental and Numerical Studies of the Pressure Drop in Ceramic Foams for Volumetric Solar Receiver Applications
,”
Appl. Energy
,
87
(
2
), pp.
504
513
.
22.
Iasiello
,
M.
,
Cunsolo
,
S.
,
Oliviero
,
M.
,
Harris
,
W. M.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2014
, “
Numerical Analysis of Heat Transfer and Pressure Drop in Metal Foams for Different Morphological Models
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112601
.
23.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
,
2003
, “
Simulations of Flow Through Open Cell Metal Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
,
24
(
6
), pp.
825
834
.
24.
Brakke
,
K. A.
,
1992
, “
The surface evolver
,”
Exp. Math.
,
1
(
2
), pp.
141
165
.
25.
Stern
,
F.
,
Wilson
,
R. V.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
,
2001
, “
Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedures
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
793
802
.
26.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
,
Albuquerque, NM
.
27.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
New York
.
28.
Nakayama
,
A.
, and
Kuwahara
,
F.
,
2008
, “
A General Bioheat Transfer Model Based on the Theory of Porous Media
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3190
3199
.
29.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.
30.
Carman
,
P. C.
,
1937
, “
Fluid Flow Through Granular Beds
,”
Trans. Inst. Chem. Eng.
,
15
, pp.
150
166
.
31.
Boudreau
,
B. P.
,
1996
, “
The Diffusive Tortuosity of Fine-Grained Unlithified Sediments
,”
Geochim. Cosmochim. Acta
,
60
(
16
), pp.
3139
3142
.
32.
Bear
,
J.
,
2013
,
Dynamics of Fluids in Porous Media
,
Dover Publications
,
New York
, Chap. 5.
You do not currently have access to this content.