The single-phase flow and heat transfer behaviors of SiC and Al2O3 nanoparticles dispersed in water were studied experimentally in a multiport minichannel flat tube (MMFT). The volume concentrations of the two nanofluids ranged from 0.001% to 1%. Their effective particle sizes, thermal conductivities, and viscosities were also measured. Results indicated that these nanofluids as a working fluid could enhance heat transfer but increase pressure drop and the Nusselt number by up to 85%. The two nanofluids exhibited a common optimal volume concentration of 0.01% for heat transfer. Effective particle size was also found to have a significant effect on heat transfer.

References

References
1.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer and
H. P.
Wang
, eds.,
American Society of Mechanical Engineers
,
New York
.
2.
Heris
,
S. Z.
,
Etemad
,
S. Gh.
, and
Esfahany
,
M. N.
,
2006
, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
33
(
4
), pp.
529
535
.
3.
Wen
,
D. S.
, and
Ding
,
Y. L.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5181
5188
.
4.
Torii
,
S. C.
, and
Yang
,
W. J.
,
2009
, “
Heat Transfer Augmentation of Aqueous Suspensions of Nanodiamonds in Turbulent Pipe Flow
,”
ASME J. Heat transfer
,
131
(
4
), p.
043203
.
5.
Hojjat
,
M.
,
Etemad
,
S. Gh.
,
Bagheri
,
R.
, and
Thibault
,
J.
,
2011
, “
Convective Heat Transfer of Non-Newtonian Nanofluids Through a Uniformly Heated Circular Tube
,”
Int. J. Therm. Sci.
,
50
(
4
), pp.
525
531
.
6.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.
7.
Aly
,
W.
,
2014
, “
Numerical Study on Turbulent Heat Transfer and Pressure Drop of Nanofluid in Coiled Tube-in-Tube Heat Exchangers
,”
Energy Convers. Manage.
,
79
, pp.
304
316
.
8.
Sundar
,
L. S.
,
Naik
,
M. T.
,
Sharma
,
K. V.
,
Singh
,
M. K.
, and
Siva Reddy
,
T. Ch.
,
2012
, “
Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in a Tube With Fe3O4 Magnetic Nanofluid
,”
Exp. Therm. Fluid Sci.
,
37
, pp.
65
71
.
9.
Sahin
,
B.
,
Gültekin
,
G. G.
,
Manay
,
E.
, and
Karagoz
,
S.
,
2013
, “
Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of Al2O3-Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
21
28
.
10.
Li
,
J.
, and
Kleinstreuer
,
C.
,
2010
, “
Entropy Generation Analysis for Nanofluid Flow in Microchannels
,”
ASME J. Heat transfer
,
132
(
12
), p.
122401
.
11.
Liu
,
D.
, and
Yu
,
L.
,
2010
, “
Single-Phase Thermal Transport of Nanofluids in a Minichannel
,”
ASME J. Heat Transfer
,
133
(
3
), p.
031009
.
12.
Seyf
,
H. R.
, and
Mohammadian
,
S. K.
,
2011
, “
Thermal and Hydraulic Performance of Counterflow Microchannel Heat Exchangers With and Without Nanofluids
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081801
.
13.
Nikkam
,
N.
,
Haghighi
,
E. B.
,
Saleemi
,
M.
,
Behi
,
M.
,
Khodabandeh
,
R.
,
Muhammed
,
M.
,
Palm
,
B.
, and
Toprak
,
M. S.
,
2014
, “
Experimental Study on Preparation and Base Liquid Effect on Thermo-Physical and Heat Transport Characteristics of α-SiC Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
55
, pp.
38
44
.
14.
Manna
,
O.
,
Singh
,
S. K.
, and
Paul
,
G.
,
2012
, “
Enhanced Thermal Conductivity of Nano-SiC Dispersed Water Based Nanofluid
,”
Bull. Mater. Sci.
,
35
(
5
), pp.
707
712
.
15.
Meriläinen
,
A.
,
Seppälä
,
A.
,
Saari
,
K.
,
Seitsonen
,
J.
,
Ruokolainen
,
J.
,
Puisto
,
S.
,
Rostedt
,
N.
, and
Ala-Nissila
,
T.
,
2013
, “
Influence of Particle Size and Shape on Turbulent Heat Transfer Characteristics and Pressure Losses in Water-Based Nanofluids
,”
Int. J. Heat Mass Transfer
,
61
, pp.
439
448
.
16.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
(
1
), pp.
167
171
.
17.
Batchelor
,
G. K.
,
1977
, “
The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles
,”
J. Fluid Mech.
,
83
(
1
), pp.
97
117
.
18.
Agostini
,
B.
,
Bontemps
,
A.
, and
Thonon
,
B.
,
2006
, “
Effects of Geometrical and Thermophysical Parameters on Heat Transfer Measurements in Small-Diameter Channels
,”
Heat Transfer Eng.
,
27
(
1
), pp.
14
24
.
19.
Anoop
,
K.
,
Sadr
,
R.
,
Yu
,
J.
,
Kang
,
S.
,
Jeon
,
S.
, and
Banerjee
,
D.
,
2012
, “
Experimental Study of Forced Convective Heat Transfer of Nanofluids in a Microchannel
,”
Int. Commun. Heat Mass Transfer
,
39
(
9
), pp.
1325
1330
.
20.
Shah
,
R.
, and
London
,
A.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
London
.
21.
Incropera
,
F.
, and
DeWitt
,
D.
,
1994
,
Fundamentals of Heat and Mass Transfer
,
4th ed.
,
Wiley
,
New York
.
22.
Garimella
,
S.
,
Dowling
,
W. J.
,
van der Veen
,
M.
, and
Killion
,
J. D.
,
2001
, “
The Effect of Simultaneously Developing Flow on Heat Transfer in Rectangular Tubes
,”
Heat Transfer Eng.
,
22
(
6
), pp.
12
25
.
23.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
24.
Stephan
,
K.
, and
Preuβer
,
P.
,
1979
, “
Wärmeübergang und maximale wärmestromdichte beim behältersieden binärer und ternärer flüssigkeitsgemische
,”
Chem. Ing. Tech.
,
51
(
1
), p.
37
.
25.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
,
3rd ed.
,
McGraw-Hill
,
Singapore
.
26.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2010
, “
An Experimental Study on the Heat Transfer Performance and Pressure Drop of TiO2-Water Nanofluids Flowing Under a Turbulent Flow Regime
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
334
344
.
27.
Sohel
,
M. R.
,
Khaleduzzaman
S. S.
,
Saidur
R.
,
Hepbasli
A.
,
Sabri
M. F. M.
, and
Mahbubul
,
I. M.
,
2014
, “
An Experimental Investigation of Heat Transfer Enhancement of a Minichannel Heat Sink Using Al2O3–H2O Nanofluid
,”
Int. J. Heat Mass Transfer
,
74
, pp.
164
172
.
28.
Hwang
,
K. S.
,
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2009
, “
Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
193
199
.
29.
Celata
,
G. P.
,
D'annibale
,
F.
,
Mariani
,
A.
,
Saraceno
,
L.
,
D'amato
,
R.
, and
Bubbico
,
R.
,
2013
, “
Heat Transfer in Water-Based SiC and TiO2 Nanofluids
,”
Heat Transfer Eng.
,
34
(
13
), pp.
1060
1072
.
30.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.
31.
Heyhat
,
M. M.
, and
Kowsary
,
F.
,
2010
, “
Effect of Particle Migration on Flow and Convective Heat Transfer of Nanofluids Flowing Through a Circular Pipe
,”
ASME J. Heat Transfer
,
132
(
6
), p.
062401
.
32.
Singh
,
P. K.
,
Harikrishna
,
P. V.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2011
, “
Experimental and Numerical Investigation Into the Heat Transfer Study of Nanofluids in Microchannel
,”
ASME J. Heat Transfer
,
133
(
12
), p.
121701
.
33.
Huang
,
Z. F.
,
Nakayama
,
A.
,
Yang
,
K.
,
Yang
,
C.
, and
Liu
,
W.
,
2010
, “
Enhancing Heat Transfer in the Core Flow by Using Porous Medium Insert in a Tube
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
1164
1174
.
34.
Abbasian Arani
,
A. A.
, and
Amani
,
J.
,
2013
, “
Experimental Investigation of Diameter Effect on Heat Transfer Performance and Pressure Drop of TiO2-Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
520
533
.
35.
Ho
,
C. J.
, and
Chen
,
W. C.
,
2013
, “
An Experimental Study on Thermal Performance of Al2O3/Water Nanofluid in a Minichannel Heat Sink
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
516
522
.
You do not currently have access to this content.