The unsteady flow physics and heat transfer characteristics due to interactions of periodic passing wakes with a separated boundary layer are studied using large-eddy simulation (LES). A series of airfoils of constant thickness with rounded leading edge are employed to obtain the separated boundary layer. Wake data extracted from precursor LES of flow past a cylinder are used to replicate a moving bar that generates wakes in front of a cascade (in this case, an infinite row of the model airfoils). This setup is a simplified representation of the rotor–stator interaction in turbomachinery. With a uniform inlet, the laminar boundary layer separates near the leading edge, undergoes transition due to amplification of disturbances, becomes turbulent, and finally reattaches forming a separation bubble. In the presence of oncoming wakes, the characteristics of the separated boundary layer have changed and the impinging wakes are found to be the mechanism affecting the reattachment. Phase-averaged results illustrate the periodic behavior of both flow and heat transfer. Large undulations in the phase-averaged skin friction and Nusselt number distributions can be attributed to the excitation of the boundary layer by convective wakes forming coherent vortices, which are being shed and convect downstream. Further, the transition of the separated boundary layer during the wake-induced path is governed by a mechanism that involves the convection of these vortices followed by increased fluctuations, where viscous effect is substantial.

References

References
1.
Sarkar
,
S.
,
2008
, “
Identification of Flow Structures on a LP Turbine Blade Due to Periodic Passing Wakes
,”
ASME J. Fluids Eng.
,
130
(
6
), p.
061103
.
2.
Sarkar
,
S.
,
2009
, “
Influence of Wake Structure on Unsteady Flow in an LP Turbine Blade Passage
,”
ASME J. Turbomach.
,
131
(
4
), p.
041016
.
3.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines
,”
Prog. Aerosp. Sci.
,
41
(
6
), pp.
419
454
.
4.
Wissink
,
J. G.
,
Rodi
,
W.
, and
Hodson
,
H.
,
2006
, “
Influence of Disturbances Carried by Periodically Incoming Wakes on the Separating Flow Around a Turbine Blade
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
721
729
.
5.
Wissink
,
J. G.
, and
Rodi
,
W.
,
2006
, “
Direct Numerical Simulation of Flow and Heat Transfer Analysis in a Turbine Cascade in the Presence of Incoming Wakes
,”
J. Fluid Mech.
,
569
, pp.
209
247
.
6.
Spalart
,
P. R.
, and
Strelets
,
M. K. H.
,
2000
, “
Mechanism of Transition and Heat Transfer in a Separation Bubble
,”
J. Fluid Mech.
,
403
, pp.
329
349
.
7.
Liu
,
X.
, and
Rodi
,
W.
,
1991
, “
Experiments on Transitional Boundary Layers With Wake-Induced Unsteadiness
,”
J. Fluid Mech.
,
231
, pp.
229
256
.
8.
Liu
,
X.
, and
Rodi
,
W.
,
1994
, “
Surface Pressure and Heat Transfer Measurements in a Turbine Cascade With Unsteady Oncoming Wakes
,”
Exp. Fluids
,
17
(
3
), pp.
171
178
.
9.
Schulte
,
W.
, and
Hodson
,
H. P.
,
1998
, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
,”
ASME J. Turbomach.
,
120
(
1
), pp.
28
35
.
10.
Yardi
,
N. R.
, and
Sukhatme
,
S. P.
,
1978
, “
Effect of Turbulence Intensity and Integral Length Scale of a Turbulent Free Stream on Forced Convection Heat Transfer From a Circular Cylinder in Cross Flow
,”
6th International Heat Transfer Conference
,
Toronto, ON, Canada
, Vol.
5
, pp.
347
352
.
11.
Magari
,
P. J.
, and
LaGraff
,
L. E.
,
1994
, “
Wake-Induced Unsteady Stagnation-Region Heat Transfer Measurements
,”
ASME J. Turbomach.
,
116
(
1
), pp.
29
38
.
12.
Meyer
,
R. X.
,
1958
, “
The Effects of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines
,”
ASME J. Basic Eng.
,
80
, pp.
1544
1552
.
13.
Paxson
,
D. E.
, and
Mayle
,
R. E.
,
1991
, “
Laminar Boundary Layer Interaction With an Unsteady Passing Wake
,”
ASME J. Turbomach.
,
113
(
3
), pp.
419
427
.
14.
Holland
,
R. M.
, and
Evans
,
R. L.
,
1996
, “
The Effects of Periodic Wake Structures on Turbulent Boundary Layers
,”
J. Fluids Struct.
,
10
(
3
), pp.
269
280
.
15.
Wu
,
X.
,
Jacobs
,
R. G.
,
Hunt
,
J. R. C.
, and
Durbin
,
P. A.
,
1999
, “
Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid Mech.
,
398
, pp.
109
153
.
16.
Funazaki
,
K.
, and
Kato
,
Y.
,
2002
, “
Studies in a Blade Leading Edge Separation Bubble Affected by Periodic Wakes: Its Transitional Behavior and Boundary Layer Loss Reduction
,”
ASME
Paper No. GT-2002-30221.
17.
Stieger
,
R.
,
Hollis
,
D.
, and
Hodson
,
H.
,
2003
, “
Unsteady Surface Pressures Due to Wake Induced Transition in Laminar Separation Bubble on a LP Turbine Cascade
,”
ASME
Paper No. GT2003-38303.
18.
Sarkar
,
S.
, and
Voke
,
P.
,
2006
, “
Large-Eddy Simulation of Unsteady Surface Pressure on a LP Turbine Blade Due to Interactions of Passing Wakes and Inflexional Boundary Layer
,”
ASME J. Turbomech.
,
128
(
2
), pp.
221
231
.
19.
Wissink
,
J. G.
,
2003
, “
DNS of Separating, Low Reynolds Number Flow in a Turbine Cascade With Incoming Wakes
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
626
635
.
20.
Schobeiri
,
M. T.
,
Öztürk
,
B.
, and
Ashpis
,
D. E.
,
2007
, “
Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Intermittency Behavior Along the Suction Surface of a Low Pressure Turbine Blade
,”
ASME J. Turbomach.
,
129
(
1
), pp.
92
107
.
21.
Michelassi
,
V.
,
Martelli
,
F.
,
Denos
,
R.
,
Arts
,
T.
, and
Sieverding
,
C. H.
,
1999
, “
Unsteady Heat Transfer in Stator–Rotor Interaction by Two-Equation Turbulence Model
,”
ASME J. Turbomach.
,
121
(
3
), pp.
436
447
.
22.
Sarkar
,
S.
,
2001
, “
Analysis of Transitional Flow and Heat Transfer Over Turbine Blades: Algebraic Versus Low-Reynolds-Number Turbulence Model
,”
Proc. Inst. Mech. Eng., Part C
,
215
(
9
), pp.
1003
1018
.
23.
Lardeau
,
S.
, and
Leschziner
,
M. A.
,
2004
, “
Unsteady Reynolds-Averaged Navier–Stokes Computations of Transitional Wake/Blade Interaction
,”
AIAA J.
,
42
(
8
), pp.
1559
1571
.
24.
Medic
,
G.
, and
Durbin
,
P. A.
,
2002
, “
Toward Improved Prediction of Heat Transfer on Turbine Blades
,”
ASME J. Turbomach.
,
124
(
2
), pp.
187
192
.
25.
Suzen
,
Y. B.
, and
Huang
,
P. G.
,
2005
, “
Numerical Simulation of Unsteady Wake/Blade Interactions in Low-Pressure Turbine Flows Using an Intermittency Transport Equation
,”
ASME J. Turbomach.
,
127
(
3
), pp.
431
444
.
26.
Sarkar
,
S.
,
2007
, “
The Effects of Passing Wakes on a Separating Boundary Layer Along a Low-Pressure Turbine Blade Through Large-Eddy Simulation
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
4
), pp.
551
564
.
27.
Sarkar
,
S.
,
2007
, “
Large-Eddy Simulation of Wake Convection and Unsteady Flow in a LP Turbine Blade Passage
,”
Prog. Comput. Fluid Dyn.
,
7
(
7
), pp.
387
403
.
28.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.
29.
Lilly
,
D. K.
,
1991
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
.
30.
Mittal
,
R.
, and
Moin
,
P.
,
1997
, “
Suitability of Upwind-Biased Finite-Difference Schemes for Large-Eddy Simulation of Turbulent Flows
,”
AIAA J.
,
35
(
8
), pp.
1415
1417
.
31.
Morinishi
,
Y.
,
Lund
,
T. S.
,
Vasilyev
,
O. V.
, and
Moin
,
P.
,
1998
, “
Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow
,”
J. Comput. Phys.
,
143
(
1
), pp.
90
124
.
32.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier–Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.
33.
Zhang
,
S. L.
,
1997
, “
GPBI-CG: Generalized Product-Type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems
,”
SIAM J. Sci. Comput.
,
18
(
2
), pp.
537
551
.
34.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd.-Yusof
,
J.
,
2000
, “
Combined Immersed Boundary Finite Difference Methods for Three Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
(
1
), pp.
35
60
.
35.
Muldoon
,
F.
, and
Acharya
,
S.
,
2005
, “
Mass Conservation in Immersed Boundary Method
,”
ASME
Paper No. FEDSM2005-77301.
36.
Sarkar
,
S.
, and
Sarkar
,
S.
,
2009
, “
Large-Eddy Simulation of Wake and Boundary Layer Interactions Behind a Circular Cylinder
,”
ASME J. Fluids Eng.
,
131
(
9
), p.
091201
.
37.
Yang
,
Z. Y.
, and
Voke
,
P. R.
,
2001
, “
Large Eddy Simulation of Boundary Layer Separation and Transition at Change of Surface Curvature
,”
J. Fluid Mech.
,
439
, pp.
305
333
..
38.
Orlanski
,
I.
,
1976
, “
Simple Boundary Condition for Unbounded Hyperbolic Flows
,”
J. Comput. Phys.
,
21
(
3
), pp.
251
269
.
39.
Sarkar
,
S.
, and
Babu
,
H.
,
2015
, “
Large Eddy Simulation on the Interactions of Wake and Film-Cooling Near a Leading Edge
,”
ASME J. Turbomach.
,
137
(
1
), p.
011005
.
40.
Arts
,
T.
,
Lambert de Rouvroit
,
M.
, and
Rutherford
,
A. W.
,
1990
, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,” von Karman Institute for Fluid Dynamics, Technical Note No. 174.
41.
Ovchinnikov
,
V.
,
Piomelli
,
U.
, and
Choudhari
,
M. M.
,
2006
, “
Numerical Simulations of Boundary-Layer Transition Induced by a Cylinder Wake
,”
J. Fluid Mech.
,
547
, pp.
413
441
.
42.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.
43.
Coupland
,
J.
, and
Brierley
,
D.
,
1996
, “
Transition in Turbomachinery Flows
,” Final Report, BRITE/EURAM Project No. AERO-CT92-0050.
44.
Wu
,
X.
, and
Durbin
,
P. A.
,
2001
, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in Turbine Passage
,”
J. Fluid Mech.
,
446
, pp.
199
228
.
45.
Horton
,
H. P.
,
1968
, “
A Semi-Empirical Theory for Growth and Bursting of Laminar Separation Bubbles
,” Ph.D. dissertation, University of London, London, UK.
46.
Colburn
,
A. P.
,
1933
, “
A Method of Correlating Forced Convection Heat Transfer Data and a Comparison With Fluid Friction
,”
Trans. Am. Inst. Chem. Eng.
,
29
, pp.
174
210
.
47.
Alam
,
M.
, and
Sandham
,
N. D.
,
2000
, “
Direct Numerical Simulation of ‘Short’ Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
,
403
, pp.
223
250
.
48.
Watmuff
,
J. H.
,
1999
, “
Evolution of a Wave Packet Into Vortex Loops in a Laminar Separation Bubble
,”
J. Fluid Mech.
,
397
, pp.
119
169
.
49.
Pauley
,
L. L.
,
Moin
,
P.
, and
Reynolds
,
W. C.
,
1990
, “
The Structure of Two-Dimensional Separation
,”
J. Fluid Mech.
,
220
, pp.
397
411
.
50.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2010
, “
Transition Mechanisms in Separation Bubbles Under Low- and Elevated-Freestream Turbulence
,”
ASME J. Turbomach.
,
132
(
1
), p.
011004
.
51.
Walker
,
G. J.
,
1989
, “
Transitional Flow on Axial Turbomachine Blading
,”
AIAA J.
,
27
(
5
), pp.
595
602
.
You do not currently have access to this content.