Pool film boiling was studied by visualized quenching experiments on stainless steel spheres in water at the atmospheric pressure. The surfaces of the spheres were coated to be superhydrophobic (SHB), having a static contact angle greater than 160 deg. Subcooled conditions were concerned parametrically with the subcooling degree being varied from 0 °C (saturated) to 70 °C. It was shown that film boiling is the overwhelming mode of heat transfer during the entire course of quenching as a result of the retention of stable vapor film surrounding the SHB spheres, even at very low wall superheat that normally corresponds to nucleate boiling. Pool boiling heat transfer is enhanced with increasing the subcooling degree, in agreement with the thinning trend of the vapor film thickness. The heat flux enhancement was found to be up to fivefold for the subcooling degree of 70 °C in comparison to the saturated case, at the wall superheat of 200 °C. A modified correlation in the ratio form was proposed to predict pool film boiling heat transfer from spheres as a function of the subcooling degree.

References

References
1.
Hsu
,
Y. Y.
,
1970
, “
A Review on Film Boiling
,” Report No. NASA TM X-52837.
2.
Bromley
,
L. A.
,
1950
, “
Heat Transfer in Stable Film Boiling
,”
Chem. Eng. Prog.
,
46
(
5
), pp.
221
227
.
3.
Liu
,
C.
, and
Theofanous
,
T. G.
,
1996
, “
Film Boiling on Spheres in Single- and Two-Phase Flows
,” Report No. DOE/ER/12933-3.
4.
Frederking
,
T. H. K.
, and
Clark
,
J. A.
,
1963
, “
Natural Convection Film Boiling on a Sphere
,”
Adv. Cryog. Eng.
,
8
, pp.
501
506
.
5.
Bradfield
,
W. S.
,
1967
, “
On the Effect of Subcooling on Wall Superheat in Pool Boiling
,”
ASME J. Heat Transfer
,
89
(
3
), pp.
269
270
.
6.
Witte
,
L. C.
,
1968
, “
Film Boiling From a Sphere
,”
Ind. Eng. Chem. Fundam.
,
7
(
3
), pp.
517
518
.
7.
Hendricks
,
R. C.
, and
Baumeister
,
K. J.
,
1969
, “
Film Boiling From Submerged Spheres
,” Report No. NASA TN-5124.
8.
Farahat
,
M. M. K.
,
1972
, “
Transient-Boiling Heat Transfer From Spheres to Sodium
,” Report No. ANL-7909.
9.
Farahat
,
M. M.
,
Eggen
,
D. T.
, and
Armstrong
,
D. R.
,
1974
, “
Pool Boiling in Subcooled Sodium at Atmospheric Pressure
,”
Nucl. Sci. Eng.
,
53
(
2
), pp.
240
254
.
10.
Farahat
,
M. M.
,
1978
, “
Nature Convection Film Boiling From Spheres to Saturated Liquids, An Integral Approach
,”
Int. J. Heat Mass Transfer
,
21
(
2
), pp.
256
258
.
11.
Dhir
,
V. K.
, and
Purohit
,
G. P.
,
1978
, “
Subcooled Film-Boiling Heat Transfer From Spheres
,”
Nucl. Eng. Des.
,
47
(
1
), pp.
49
66
.
12.
Gunnerson
,
F. S.
, and
Cronenberg
,
A. W.
,
1980
, “
On the Minimum Film Boiling Conditions for Spherical Geometries
,”
ASME J. Heat Transfer
,
102
(
2
), pp.
335
341
.
13.
Shih
,
C.
, and
El-Wakil
,
A. J.
,
1981
, “
Film Boiling and Vapor Explosions From Small Spheres
,”
Nucl. Sci. Eng.
,
77
(
4
), pp.
470
479
.
14.
Michiyoshi
,
I.
,
Takahashi
,
O.
, and
Kikuchi
,
Y.
,
1989
, “
Heat Transfer and the Low Limit of Film Boiling
,”
Exp. Therm. Fluid Sci.
,
2
(
3
), pp.
268
279
.
15.
Sakurai
,
A.
,
Shiotsu
,
M.
, and
Hata
,
K.
,
1990
, “
A General Correlation for Pool Film Boiling Heat Transfer From a Horizontal Cylinder to Subcooled Liquid—Part 1: A Theoretical Pool Film Boiling Heat Transfer Model Including Radiation Contributions and Its Analytical Solution
,”
ASME J. Heat Transfer
,
112
(
2
), pp.
430
440
.
16.
Sakurai
,
A.
,
Shiotsu
,
M.
, and
Hata
,
K.
,
1990
, “
A General Correlation for Pool Film Boiling Heat Transfer From a Horizontal Cylinder to Subcooled Liquid—Part 2: Experimental Data for Various Liquids and Its Correlation
,”
ASME J. Heat Transfer
,
112
(
2
), pp.
441
450
.
17.
Tso
,
C. P.
,
Low
,
H. G.
, and
Ng
,
S. M.
,
1990
, “
Pool Film Boiling From Sphere to Saturated and Subcooled Liquids of Freon-12 and Freon-22
,”
Int. J. Heat Fluid Flow
,
11
(
2
), pp.
154
159
.
18.
Tso
,
C. P.
,
Leong
,
K. C.
, and
Tan
,
H. S.
,
1995
, “
An Analysis of Natural Convection Film Boiling From Spheres Using the Spherical Coordinate System
,”
Int. Commun. Heat Mass Transfer
,
22
(
6
), pp.
803
813
.
19.
Tou
,
S. K. W.
, and
Tso
,
C. P.
,
1997
, “
Improvement on the Modelling of Film Boiling on Spheres
,”
Int. Commun. Heat Mass Transfer
,
24
(
6
), pp.
879
888
.
20.
Kolev
,
N. I.
,
1998
, “
Film Boiling on Vertical Plates and Spheres
,”
Exp. Therm. Fluid Sci.
,
18
(
2
), pp.
97
115
.
21.
Honda
,
H.
,
Makishi
,
O.
, and
Yamashiro
,
H.
,
2007
, “
Generalized Stability Theory of Vapor Film in Subcooled Film Boiling on a Sphere
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3390
3400
.
22.
Freud
,
R.
,
Harari
,
R.
, and
Sher
,
E.
,
2009
, “
Collapsing Criteria for Vapor Film Around Solid Spheres as a Fundamental Stage Leading to Vapor Explosion
,”
Nucl. Eng. Des.
,
239
(
4
), pp.
722
727
.
23.
Jouhara
,
H.
, and
Axcell
,
B. P.
,
2009
, “
Film Boiling Heat Transfer and Vapour Film Collapse on Spheres, Cylinders and Plane Surfaces
,”
Nucl. Eng. Des.
,
239
(
10
), pp.
1885
1900
.
24.
Makishi
,
O.
, and
Honda
,
H.
,
2012
, “
Examination of Minimum-Heat-Flux-Point Condition for Film Boiling on a Sphere in Terms of the Limiting Liquid Superheat and the Critical Vapor Film Thickness
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2377
2383
.
25.
Sher
,
I.
,
Harari
,
R.
,
Reshef
,
R.
, and
Sher
,
E.
,
2012
, “
Film Boiling Collapse in Solid Spheres Immersed in a Sub-Cooled Liquid
,”
Appl. Therm. Eng.
,
36
, pp.
219
226
.
26.
Arévalo
,
R.
,
Antunez
,
D.
,
Rebollo
,
L.
, and
Abánades
,
A.
,
2014
, “
Estimation of Radiation Coupling Factors in Film Boiling Around Spheres by Means of Computational Fluid Dynamics (CFD) Tools
,”
Int. J. Heat Mass Transfer
,
78
, pp.
84
89
.
27.
Kim
,
H.
,
Truong
,
B.
,
Buongiorno
,
J.
, and
Hu
,
L.-W.
,
2011
, “
On the Effect of Surface Roughness Height, Wettability, and Nanoporosity on Leidenfrost Phenomena
,”
Appl. Phys. Lett.
,
98
(8), p.
083121
.
28.
Takata
,
Y.
,
Hidaka
,
S.
, and
Uraguchi
,
T.
,
2006
, “
Boiling Feature on a Super Water-Repellent Surface
,”
Heat Transfer Eng.
,
27
(
8
), pp.
25
30
.
29.
Wang
,
X. W.
,
Zhao
,
S. W.
,
Wang
,
H.
, and
Pan
,
T. R.
,
2012
, “
Bubble Formation on Superhydrophobic-Micropatterned Copper Surfaces
,”
Appl. Therm. Eng.
,
35
, pp.
112
119
.
30.
Wang
,
X. W.
,
Song
,
Y. X.
, and
Wang
,
H.
,
2012
, “
Observation of Nucleate Boiling on a Fine Copper Wire With Superhydrophobic Micropatterns
,”
Chin. Phys. Lett.
,
29
(
11
), p.
114702
.
31.
Betz
,
A. R.
,
Jenkins
,
J.
,
Kim
,
C. J.
, and
Attinger
,
D.
,
2013
, “
Boiling Heat Transfer on Superhydrophilic, Superhydrophobic and Superbiphilic Surfaces
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
733
741
.
32.
Fan
,
L.-W.
,
Li
,
J.-Q.
,
Li
,
D.-Y.
,
Zhang
,
L.
, and
Yu
,
Z.-T.
,
2014
, “
Regulated Transient Pool Boiling of Water During Quenching on Nanostructured Surfaces With Modified Wettability From Superhydrophilic to Superhydrophobic
,”
Int. J. Heat Mass Transfer
,
76
, pp.
81
89
.
33.
Feng
,
L.
,
Li
,
S. H.
,
Li
,
Y. S.
,
Li
,
H. J.
,
Zhang
,
L. J.
,
Zhai
,
J.
,
Song
,
Y. L.
,
Liu
,
B. Q.
,
Jiang
,
L.
, and
Zhu
,
D. B.
,
2002
, “
Super-Hydrophobic Surfaces: From Natural to Artificial
,”
Adv. Mater.
,
14
(
24
), pp.
1857
1860
.
34.
Vakarelski
, I
. U.
,
Patankar
,
N. A.
,
Marston
,
J. O.
,
Chan
,
D. Y. C.
, and
Thoroddsen
,
S. T.
,
2012
, “
Stabilization of Leidenfrost Vapour Layer by Textured Superhydrophobic Surfaces
,”
Nature
,
489
(7415), pp.
274
277
.
35.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.
36.
Vakarelski
, I
. U.
,
Chan
,
D. Y. C.
,
Marston
,
J. O.
, and
Thoroddsen
,
S. T.
,
2013
, “
Dynamic Air Layer on Textured Superhydrophobic Surfaces
,”
Langmuir
,
29
(
35
), pp.
11074
11081
.
You do not currently have access to this content.