This paper presents a fundamental study of the flow dynamics and heat transfer induced by a slug flow under saturated flow boiling in a circular microchannel. Numerical simulations are carried out by utilizing the commercial CFD solver ansys fluent v. 14.5, with its built-in volume of fluid (VOF) method to advect the interface, which was improved here by implementing self-developed functions to model the phase change and the surface tension force. A continuous stream of bubbles is generated (by additional user-defined functions) by patching vapor bubbles at the channel upstream with a constant generation frequency. This modeling framework can capture the essential features of heat transfer in slug flows for a continuous stream of bubbles which are here investigated in detail, e.g., the mutual influence among the growing bubbles, the fluid mechanics in the liquid slug trapped between two consecutive bubbles, the effect of bubble acceleration on the thickness of the thin liquid film trapped against the channel wall and on other bubbles, and the transient growth of the heat transfer coefficient and then its periodic variation at the terminal steady-periodic regime, which is reached after the transit of a few bubble–liquid slug pairs. Furthermore, the results for a continuous stream of bubbles are found to be quite different than that of a single bubble, emphasizing the importance of modeling multiple bubbles to study this process. Finally, the outcomes of this analysis are utilized to advance a theoretical model for heat transfer in microchannel slug flow that best reproduces the present simulation data.

References

References
1.
Szczukiewicz
,
S.
,
Magnini
,
M.
, and
Thome
,
J. R.
,
2014
, “
Proposed Models, Ongoing Experiments, and Latest Numerical Simulations of Microchannel Two-Phase Flow Boiling
,”
Int. J. Multiphase Flow
,
59
, pp.
84
101
.
2.
Baldassari
,
C.
, and
Marengo
,
M.
,
2013
, “
Flow Boiling in Microchannels and Microgravity
,”
Prog. Energy Combust. Sci.
,
39
(
1
), pp.
1
36
.
3.
Bigonha Tibiriçá
,
C.
, and
Ribatski
,
G.
,
2013
, “
Flow Boiling in Micro-Scale Channels—Synthesized Literature Review
,”
Int. J. Refrig.
,
36
(
2
), pp.
301
324
.
4.
Thome
,
J. R.
,
2006
, “
State-of-the-Art Overview of Boiling and Two-Phase Flows in Microchannels
,”
Heat Transfer Eng.
,
27
(
9
), pp.
4
19
.
5.
Barnea
,
D.
,
1990
, “
Effect of Bubble Shape on Pressure Drop Calculations in Vertical Slug Flow
,”
Int. J. Multiphase Flow
,
16
(
1
), pp.
79
89
.
6.
Yarin
,
L. P.
,
Ekelchik
,
L. A.
, and
Hetsroni
,
G.
,
2002
, “
Two-Phase Laminar Flow in a Heated Microchannels
,”
Int. J. Multiphase Flow
,
28
(
10
), pp.
1589
1616
.
7.
Thome
,
J. R.
,
Dupont
,
V.
, and
Jabobi
,
A. M.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels. Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3375
3385
.
8.
Lazarek
,
G. M.
, and
Black
,
S. H.
,
1982
, “
Evaporative Heat Transfer, Pressure Drop and Critical Heat Flux in a Small Vertical Tube With R113
,”
Int. J. Heat Mass Transfer
,
25
(
7
), pp.
945
960
.
9.
Tran
,
T. N.
,
Wambsganss
,
M. W.
, and
France
,
D. M.
,
1996
, “
Small Circular- and Rectangular-Channel Boiling With Two Refrigerants
,”
Int. J. Multiphase Flow
,
22
(
3
), pp.
485
498
.
10.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2009
, “
Effects of Heat Flux, Mass Flux, Vapor Quality, and Saturation Temperature on Flow Boiling Heat Transfer in Microchannels
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
142
154
.
11.
Agostini
,
B.
,
Thome
,
J. R.
,
Fabbri
,
M.
,
Michel
,
B.
,
Calmi
,
D.
, and
Kloter
,
U.
,
2008
, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels—Part I: Heat Transfer Characteristics of Refrigerant R236fa
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5400
5414
.
12.
Consolini
,
L.
, and
Thome
,
J. R.
,
2009
, “
Micro-Channel Flow Boiling Heat Transfer of R-134a, R-236fa, and R-245fa
,”
Microfluid. Nanofluid.
,
6
(
6
), pp.
731
746
.
13.
Han
,
Y.
,
Shikazono
,
N.
, and
Kasagi
,
N.
,
2012
, “
The Effect of Liquid Film Evaporation on Flow Boiling Heat Transfer in a Microtube
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
547
555
.
14.
Hetsroni
,
G.
,
Gurevich
,
M.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
,
Rozenblit
,
R.
, and
Yarin
,
L.
,
2003
, “
Boiling in Capillary Tubes
,”
Int. J. Multiphase Flow
,
29
(
10
), pp.
1551
1563
.
15.
Szczukiewicz
,
S.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2013
, “
Two-Phase Heat Transfer and High-Speed Visualization of Refrigerant Flows in 100 × 100 μm2 Silicon Multi-Microchannels
,”
Int. J. Refrig.
,
36
(
2
), pp.
402
413
.
16.
Kim
,
T. H.
,
Kommer
,
E.
,
Dessiatoun
,
S.
, and
Kim
,
J.
,
2012
, “
Measurement of Two-Phase Flow and Heat Transfer Parameters Using Infrared Thermometry
,”
Int. J. Multiphase Flow
,
40
, pp.
56
67
.
17.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2005
, “
Numerical Simulation of Growth of a Vapor Bubble During Flow Boiling of Water in Microchannel
,”
Microfluid. Nanofluid.
,
1
(
2
), pp.
137
145
.
18.
Li
,
D.
, and
Dhir
,
V. K.
,
2007
, “
Numerical Study of Single Bubble Dynamics During Flow Boiling
,”
ASME J. Heat Transfer
,
129
(
7
), pp.
864
876
.
19.
Mukherjee
,
A.
,
Kandlikar
,
S. G.
, and
Edel
,
Z. J.
,
2011
, “
Numerical Study of Bubble Growth and Wall Heat Transfer During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3702
3718
.
20.
Magnini
,
M.
,
Pulvirenti
,
B.
, and
Thome
,
J. R.
,
2013
, “
Numerical Investigation of Hydrodynamics and Heat Transfer of Elongated Bubbles During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
59
, pp.
451
471
.
21.
Dong
,
Z.
,
Xu
,
J.
,
Jiang
,
F.
, and
Liu
,
P.
,
2012
, “
Numerical Study of Vapor Bubble Effect on Flow and Heat Transfer in Microchannel
,”
Int. J. Therm. Sci.
,
54
, pp.
22
32
.
22.
Magnini
,
M.
,
Pulvirenti
,
B.
, and
Thome
,
J. R.
,
2013
, “
Numerical Investigation of the Influence of Leading and Sequential Bubbles on Slug Flow Boiling Within a Microchannel
,”
Int. J. Therm. Sci.
,
71
, pp.
36
52
.
23.
Pattamatta
,
A.
,
Freystein
,
M.
, and
Stephan
,
P.
,
2014
, “
A Parametric Study on Phase Change Heat Transfer Due to Taylor-Bubble Coalescence in a Square Minichannel
,”
Int. J. Heat Mass Transfer
,
76
, pp.
16
32
.
24.
Fang
,
C.
,
David
,
M.
,
Rogacs
,
A.
, and
Goodson
,
K.
,
2010
, “
Volume of Fluid Simulation of Boiling Two-Phase Flow in a Vapor-Venting Microchannel
,”
Front. Heat Mass Transfer
,
1
(
1
), p.
013002
.
25.
Zhuan
,
R.
, and
Wang
,
W.
,
2011
, “
Simulation of Subcooled Flow Boiling in a Micro-Channel
,”
Int. J. Refrig.
,
34
(
3
), pp.
781
795
.
26.
Zhuan
,
R.
, and
Wang
,
W.
,
2012
, “
Flow Pattern of Boiling in Micro-Channel by Numerical Simulation
,”
Int. J. Heat Mass Transfer
,
55
(
5–6
), pp.
1741
1753
.
27.
Zu
,
Y. Q.
,
Yan
,
Y. Y.
,
Gedupudi
,
S.
,
Karayiannis
,
T. G.
, and
Kenning
,
D. B. R.
,
2011
, “
Confined Bubble Growth During Flow Boiling in a Mini-/Micro-Channel of Rectangular Cross-Section Part II: Approximate 3-D Numerical Simulation
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
267
273
.
28.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
29.
Cummins
,
S. J.
,
Francois
,
M. M.
, and
Kothe
,
D. B.
,
2005
, “
Estimating Curvature From Volume Fractions
,”
Comput. Struct.
,
83
(
6–7
), pp.
425
434
.
30.
Schrage
,
R. W.
,
1953
,
A Theoretical Study of Interphase Mass Transfer
,
Columbia University Press
,
New York
.
31.
Tanasawa
,
I.
,
1991
, “
Advances in Condensation Heat Transfer
,”
Advances in Heat Transfer
,
J. P.
Hartnett
, and
T. F.
Irvine
, eds.,
Academic Press
,
San Diego, CA
.
32.
Hardt
,
S.
, and
Wondra
,
F.
,
2008
, “
Evaporation Model for Interfacial Flows Based on a Continuum-Field Representation of the Source Terms
,”
J. Comput. Phys.
,
227
(
11
), pp.
5871
5895
.
33.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
34.
Lafaurie
,
B.
,
Nardone
,
C.
,
Scardovelli
,
R.
,
Zaleski
,
S.
, and
Zanetti
,
G.
,
1994
, “
Modeling Merging and Fragmentation in Multiphase Flows With SURFER
,”
J. Comput. Phys.
,
113
(
1
), pp.
134
147
.
35.
Magnini
,
M.
,
2012
, “
CFD Modeling of Two-Phase Boiling Flows in the Slug Flow Regime With an Interface Capturing Technique
,” Ph.D. thesis, Alma Mater Studiorum—Università di Bologna, Bologna, Italy.
36.
Youngs
,
D. L.
,
1982
, “
Time-Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numerical Methods for Fluid Dynamics
,
K. W.
Morton
, and
M. J.
Baines
, eds.,
Academic Press
,
New York
, pp.
273
285
.
37.
Issa
,
R. I.
,
1985
, “
Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
38.
Ong
,
C. L.
, and
Thome
,
J. R.
,
2011
, “
Macro-to-Microchannel Transition in Two-Phase Flow: Part 1—Two-Phase Flow Patterns and Film Thickness Measurements
,”
Exp. Therm. Fluid Sci.
,
35
(
1
), pp.
37
47
.
39.
Han
,
Y.
, and
Shikazono
,
N.
,
2009
, “
Measurement of the Liquid Film Thickness in Microtube Slug Flow
,”
Int. J. Heat Mass Transfer
,
30
(
5
), pp.
842
853
.
40.
Dupont
,
V.
,
Thome
,
J. R.
, and
Jabobi
,
A. M.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels. Part II: Comparison With the Database
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3387
3401
.
41.
Agostini
,
B.
,
Revellin
,
R.
, and
Thome
,
J. R.
,
2008
, “
Elongated Bubbles in Microchannels. Part I: Experimental Study and Modeling of Elongated Bubble Velocity
,”
Int. J. Multiphase Flow
,
34
(
6
), pp.
590
601
.
42.
Consolini
,
L.
, and
Thome
,
J. R.
,
2010
, “
A Heat Transfer Model for Evaporation of Coalescing Bubbles in Microchannel Flow
,”
Int. J. Heat Fluid Flow
,
31
(
1
), pp.
115
125
.
43.
Bretherton
,
F. P.
,
1961
, “
The Motion of Large Bubbles in Tubes
,”
J. Fluid Mech.
,
10
, pp.
166
188
.
44.
Taylor
,
G. I.
,
1961
, “
Deposition of a Viscous Fluid on the Wall of a Tube
,”
J. Fluid Mech.
,
10
, pp.
161
165
.
45.
Rek
,
Z.
, and
Zun
,
I.
,
2014
, “
CFD Based Mini- vs. Micro-System Delineation in Elongated Bubble Flow Regime
,”
Int. J. Multiphase Flow
,
59
, pp.
73
83
.
46.
Borhani
,
N.
,
Agostini
,
B.
, and
Thome
,
J. R.
,
2010
, “
A Novel Time Strip Flow Visualization Technique for Investigation of Intermittent Dewetting and Dryout in Elongated Bubble Flow in a Microchannel Evaporator
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4809
4818
.
47.
Han
,
Y.
, and
Shikazono
,
N.
,
2010
, “
The Effect of Bubble Acceleration on the Liquid Film Thickness in Micro Tubes
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
630
639
.
48.
Aussillous
,
P.
, and
Quéré
,
D.
,
2000
, “
Quick Deposition of a Fluid on the Wall of a Tube
,”
Phys. Fluids
,
12
(
10
), pp.
2367
2371
.
49.
Fairbrother
,
F.
, and
Stubbs
,
A. E.
,
1935
, “
The Bubble-Tube Method of Measurement
,”
J. Chem. Soc.
,
1
, pp.
527
529
.
50.
Revellin
,
R.
,
Agostini
,
B.
, and
Thome
,
J. R.
,
2008
, “
Elongated Bubbles in Microchannels. Part II: Experimental Study and Modeling of Bubble Collisions
,”
Int. J. Multiphase Flow
,
34
(
6
), pp.
602
613
.
51.
Lakehal
,
D.
,
Larrignon
,
G.
, and
Narayanan
,
C.
,
2008
, “
Computational Heat Transfer and Two-Phase Flow Topology in Miniature Tubes
,”
Microfluid. Nanofluid.
,
4
(
4
), pp.
261
271
.
52.
He
,
Q.
,
Hasegawa
,
Y.
, and
Kasagi
,
N.
,
2010
, “
Heat Transfer Modeling of Gas-Liquid Slug Flow Without Phase Change in a Micro Tube
,”
Int. J. Heat Fluid Flow
,
31
(
1
), pp.
126
136
.
53.
Che
,
Z.
,
Wong
,
T. N.
, and
Nguyen
,
N.-T.
,
2011
, “
An Analytical Model for Plug Flow in Microcapillaries With Circular Cross Section
,”
Int. J. Heat Fluid Flow
,
32
(
5
), pp.
1005
1013
.
54.
Che
,
Z.
,
Wong
,
T. N.
, and
Nguyen
,
N.-T.
,
2013
, “
Heat Transfer in Plug Flow in Cylindrical Microcapillaries With Constant Surface Heat Flux
,”
Int. J. Therm. Sci.
,
64
, pp.
204
212
.
You do not currently have access to this content.