Nanoparticles aggregation is considered, by the heat transfer community, as one of the main factors responsible for the observed enhancement in the thermal conductivity of nanofluids. To gain a better insight into the veracity of this claim, we experimentally investigated the influence of nanoparticles aggregation induced by changing the pH value or imposing a magnetic field on the thermal conductivity of water-based nanofluids. The results showed that the enhancement in thermal conductivity of TiO2–water nanofluid, due to pH-induced aggregation of TiO2 nanoparticles, fell within the ±10% of the mixture theory, while applying an external magnetic force on Fe3O4–water nanofluid led to thermal conductivity enhancements of up to 167%. It is believed that the observed low enhancement in thermal conductivity of TiO2–water nanofluid is because, near the isoelectric point (IEP), the nanoparticles could settle out of the suspension in the form of large aggregates making the suspension rather unstable. The magnetic field however could provide a finer control over the aggregate size and growth direction without compromising the stability of the nanofluid, and hence significantly enhancing the thermal conductivity of the nanofluid.

References

References
1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
International Mechanical Engineering Congress and Exhibition
,
San Francisco, CA
, Nov. 12–17, Paper No. 196525.
2.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
(
1
), pp.
167
171
.
3.
Azizian
,
R.
,
Doroodchi
,
E.
, and
Moghtaderi
,
B.
,
2012
, “
Effect of Nanoconvection Caused by Brownian Motion on the Enhancement of Thermal Conductivity in Nanofluids
,”
Ind. Eng. Chem. Res.
,
51
(
4
), pp.
1782
1789
.
4.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
.
5.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2004
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
(
21
), pp.
4316
4319
.
6.
Evans
,
W.
,
Prasher
,
R.
,
Fish
,
J.
,
Meakin
,
P.
,
Phelan
,
P.
, and
Keblinski
,
P.
,
2008
, “
Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1431
1438
.
7.
Nan
,
C. W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
Appl. Phys. Lett.
,
81
(
10
), pp.
6692
6699
.
8.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L. W.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Paola
,
R. D.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J. H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Vaerenbergh
,
S. V.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W. H.
,
Zhao
,
X. Z.
, and
Zhou
,
S. Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.
9.
Wamkam
,
C. T.
,
Opoku
,
M. K.
,
Hong
,
H.
, and
Smith
,
P.
,
2011
, “
Effects of pH on Heat Transfer Nanofluids Containing ZrO2 and TiO2 Nanoparticles
,”
J. Appl. Phys.
,
109
(
2
), p.
024305
.
10.
Peng
,
Z. B.
,
Doroodchi
,
E.
, and
Evans
,
G. M.
,
2014
, “
DEM Simulation of Aggregation of Suspended Nanoparticles
,”
Powder Technol.
,
204
(
1
), pp.
91
102
.
11.
Peng
,
Z. B.
,
Doroodchi
,
E.
,
Moghtaderi
,
B.
, and
Evans
,
G. M.
,
2012
, “
A DEM-Based Analysis of the Influence of Aggregate Structure on Suspension Shear Yield Stress
,”
Adv. Powder Technol.
,
23
(
4
), pp.
437
444
.
12.
Peng
,
Z. B.
,
Doroodchi
,
E.
, and
Evans
,
G. M.
,
2012
, “
Influence of Primary Particle Size Distribution on Nanoparticles Aggregation and Suspension Yield Stress: A Theoretical Study
,”
Powder Technol.
,
223
, pp.
3
11
.
13.
Peng
,
Z. B.
,
Doroodchi
,
E.
,
Sathe
,
M.
,
Joshi
,
J. B.
,
Evans
,
G. M.
, and
Moghtaderi
,
B.
,
2015
, “
A Method for Calculating the Surface Area of Numerically Simulated Aggregates
,”
Adv. Powder Technol.
,
26
(
1
), pp.
55
65
.
14.
Azizian
,
R.
,
Doroodchi
,
E.
,
McKrell
,
T.
,
Buongiorno
,
J.
,
Hu
,
L. W.
, and
Moghtaderi
,
B.
,
2014
, “
Effect of Magnetic Field on Laminar Convective Heat Transfer of Magnetite Nanofluids
,”
Int. J. Heat Mass Transfer
,
68
, pp.
94
109
.
15.
Shen
,
M.
,
Cai
,
H.
,
Wang
,
X.
,
Cao
,
X.
,
Li
,
K.
,
Wang
,
S. H.
,
Guo
,
R.
,
Zheng
,
L.
,
Zhang
,
G.
, and
Shi
,
X.
,
2012
, “
Facile One-Pot Preparation, Surface Functionalization, and Toxicity Assay of APTS-Coated Iron Oxide Nanoparticles
,”
Nanotechnology
,
23
(
10
), p.
105601
.
16.
Huang
,
J.
,
Wang
,
X.
,
Long
,
Q.
,
Wen
,
X.
,
Zhou
,
Y.
, and
Li
,
L.
,
2009
, “
Influence of pH on the Stability Characteristics of Nanofluids
,”
Photonics and Optoelectronics Symposium
, Wuhan, China, Aug. 14–16, pp.
1
4
.
17.
Li
,
X.
,
Zhu
,
D.
, and
Wang
,
X.
,
2007
, “
Evaluation on Dispersion Behavior of the Aqueous Copper Nano-Suspensions
,”
J. Colloid Interface Sci.
,
310
(
2
), pp.
456
463
.
18.
Wang
,
X.
,
Li
,
X.
, and
Yang
,
S.
,
2009
, “
Influence of pH and SDBS on the Stability and Thermal Conductivity of Nanofluids
,”
Energy Fuels
,
23
(
5
), pp.
2684
2689
.
19.
Younes
,
H.
,
Christensen
,
G.
,
Luan
,
X.
,
Hong
,
H.
, and
Smith
,
P.
,
2012
, “
Effect of Alignment, pH, Surfactant, and Solvent on Heat Transfer Nanofluids Containing Fe2O3 and CuO Nanoparticles
,”
J. Appl. Phys.
,
111
(
6
), p.
064308
.
20.
Li
,
X. F.
,
Zhu
,
D. S.
,
Wang
,
X. J.
,
Wang
,
N.
,
Gao
,
J. W.
, and
Li
,
H.
,
2008
, “
Thermal Conductivity Enhancement Dependent pH and Chemical Surfactant for Cu–H2O Nanofluids
,”
Thermochim. Acta
,
469
(
1–2
), pp.
98
103
.
21.
Wen
,
D.
, and
Ding
,
Y.
,
2006
, “
Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids)
,”
IEEE Trans. Nanotechnol.
,
5
(
3
), pp.
220
227
.
23.
Xian-Ju
,
W.
, and
Xin-Fang
,
L.
,
2009
, “
Influence of pH on Nanofluids' Viscosity and Thermal Conductivity
,”
Chin. Phys. Lett.
,
26
(
5
), p.
056601
.
24.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
,
2006
, “
Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)
,”
Nano Lett.
,
6
(
7
), pp.
1529
1534
.
25.
Wen
,
D.
,
Lin
,
G.
,
Vafaei
,
S.
, and
Zhang
,
K.
,
2009
, “
Review of Nanofluids for Heat Transfer Applications
,”
Particuology
,
7
(
2
), pp.
141
150
.
26.
Teng
,
T. P.
,
Cheng
,
C. M.
, and
Pai
,
F. Y.
,
2011
, “
Preparation and Characterization of Carbon Nanofluid by a Plasma Arc Nanoparticles Synthesis System
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
293
304
.
27.
Philip
,
J.
,
Shima
,
P. D.
, and
Raj
,
B.
,
2007
, “
Enhancement of Thermal Conductivity in Magnetite Based Nanofluid Due to Chainlike Structures
,”
Appl. Phys. Lett.
,
91
(
20
), p.
203108
.
You do not currently have access to this content.