In the present research, a new and straightforward mathematical model, named augmented state-space method, is introduced to solve the heat conduction equation for a multilayered orthotropic hollow cylinder with bonding imperfection in the presence of heat source. Since such problems including heat source are inherently inhomogeneous and complex, augmented state-space method converts these inhomogeneous equations into homogeneous ones. The transient solution will be achieved by present method based on laminate approximation theory in the Laplace domain, and then the solutions obtained are retrieved into the time domain by applying the numerical Laplace transform inversion. All material properties can be considered to vary continuously within the cylinder along the radial direction with arbitrary grading pattern. Based on the proposed method, the solution of heat conduction problem can be also obtained for general boundary conditions which may be included various combinations of arbitrary temperature, flux, or convection. Due to lack of any data on the transient thermal analysis corresponding to problems with imperfect bonds in the cylindrical coordinate system (r,θ), comparison is carried out with the available results for the three-layer semi-circular annular region with perfect bonds in the literature. Finally, the influence of orthotropy and interface imperfection on the distribution of the temperature field for three-layer hollow cylinder, in which the second layer is made of orthotropic functionally graded material (FGM), will be visualized.

References

References
1.
Lu
,
X.
,
Tervola
,
P.
, and
Viljanen
,
M.
,
2006
, “
Transient Analytical Solution to Heat Conduction in Composite Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
341
348
.
2.
Norouzi
,
M.
,
Rezaei Niya
,
S. M.
,
Kayhani
,
M. H.
,
Karimi Demneh
,
M.
, and
Naghavi
,
M. S.
,
2012
, “
Exact Solution of Unsteady Conductive Heat Transfer in Cylindrical Composite Laminates
,”
ASME J. Heat Transfer
,
134
(
10
), p.
101301
.
3.
Cossali
,
G. E.
,
2009
, “
Periodic Heat Conduction in a Solid Homogeneous Finite Cylinder
,”
Int. J. Therm. Sci.
,
48
(
4
), pp.
722
732
.
4.
Hahn
,
D. W.
, and
Özisik
,
M. N.
,
2012
,
Heat Conduction
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
5.
Zukauskas
,
A.
, and
Ziugzda
,
J.
,
1985
,
Heat Transfer of a Cylinder in Crossflow
,
Academy of Sciences of the Lithuanian SSR
,
Hemisphere Publishing, Washington, DC
.
6.
Timoshenko
,
M. V.
,
1996
, “
Numerical Simulation of Heat Transfer in Multilayer Structures With Generalized Nonideal Contact
,”
J. Eng. Phys. Thermophys.
,
69
(
5
), pp.
590
595
.
7.
Cheng
,
Z. Q.
, and
Batra
,
R. C.
,
2001
, “
Thermal Effects on Laminated Composite Shells Containing Interfacial Imperfections
,”
Compos. Struct.
,
52
(
1
), pp.
3
11
.
8.
Liu
,
Y.
,
Mioduchowski
,
A.
, and
Ru
,
C. Q.
,
2002
, “
Effect of Imperfect Interface on Thermal Stresses-Assisted Matrix Cracking in Fiber Composites
,”
J. Therm. Stresses
,
25
(
6
), pp.
585
599
.
9.
Duschlbauer
,
D.
,
Pettermann
,
H. E.
, and
Bohm
,
H. J.
,
2003
, “
Heat Conduction of Spheroidal Inhomogeneity With Imperfectly Bonded Interface
,”
J. Appl. Phys.
,
94
(
3
), pp.
1539
1549
.
10.
Cai
,
J. B.
,
Chen
,
W. Q.
, and
Ye
,
G. R.
,
2004
, “
Effect of Interlaminar Bonding Imperfections on the Behavior of Angle-Ply Laminated Cylindrical Panels
,”
Compos. Sci. Technol.
,
64
(
12
), pp.
1753
1762
.
11.
Chen
,
W. Q.
,
Jung
,
J. P.
,
Kim
,
G. W.
, and
Lee
,
K. Y.
,
2005
, “
Cross-Ply Laminated Cylindrical Panels With Viscous Interfaces Subjected to Static Loading
,”
Eur. J. Mech. A/Solids
,
24
(
5
), pp.
728
739
.
12.
Chen
,
W. Q.
,
Zhou
,
Y. Y.
,
,
C. F.
, and
Ding
,
H. J.
,
2009
, “
Bending of Multiferroic Laminated Rectangular Plates With Imperfect Interlaminar Bonding
,”
Eur. J. Mech. A/Solids
,
28
(
4
), pp.
720
727
.
13.
Salti
,
B.
, and
Laraqi
,
N.
,
1999
, “
3-D Numerical Modeling of Heat Transfer Between Two Sliding Bodies: Temperature and Thermal Contact Resistance
,”
Int. J. Heat Mass Transfer
,
42
(
13
), pp.
2363
2374
.
14.
Bauzin
,
J. G.
, and
Laraqi
,
N.
,
2004
, “
Simultaneous Estimation of Frictional Heat Flux and Two Thermal Contact Parameters for Sliding Solids
,”
Numer. Heat Transfer
,
45
(
4
), pp.
313
328
.
15.
Salazar
,
A.
, and
Celorrio
,
R.
,
2006
, “
Application of the Thermal Quadrupole Method to the Propagation of Thermal Waves in Multilayered Cylinders
,”
J. Appl. Phys.
,
100
(
11
), p.
113535
.
16.
Santos
,
H.
,
Soares
,
C. M. M.
,
Soares
,
C. A. M.
, and
Reddy
,
J. N.
,
2008
, “
A Semi-Analytical Finite Element Model for the Analysis of Cylindrical Shells Made of Functionally Graded Materials Under Thermal Shock
,”
Compos. Struct.
,
86
(
1–3
), pp.
10
21
.
17.
Delouei
,
A. A.
, and
Norouzi
,
M.
,
2015
, “
Exact Analytical Solution for Unsteady Heat Conduction in Fiber-Reinforced Spherical Composites Under the General Boundary Conditions
,”
ASME J. Heat Transfer
,
137
(
10
), pp.
101701
101708
.
18.
Keles
,
I.
, and
Conker
,
C.
,
2011
, “
Transient Hyperbolic Heat Conduction in Thick-Walled FGM Cylinders and Spheres With Exponentially-Varying Properties
,”
Eur. J. Mech. A/Solids
,
30
(
3
), pp.
449
455
.
19.
Ramadan
,
K.
, and
Al-Nimr
,
M. A.
,
2009
, “
Analysis of Transient Heat Transfer in Multilayer Thin Films With Nonlinear Thermal Boundary Resistance
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1718
1727
.
20.
Lu
,
X.
,
Tervola
,
P.
, and
Viljanen
,
M.
,
2005
, “
A New Analytical Method to Solve Heat Equation for Multi-Dimensional Composite Slab
,”
J. Phys. A: Math. Gen.
,
38
(
13
), pp.
2873
2890
.
21.
Chen
,
T.-M.
,
2013
, “
A Hybrid Transform Technique for the Hyperbolic Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
65
, pp.
274
279
.
22.
Tarn
,
J. Q.
, and
Wang
,
Y. M.
,
2004
, “
End Effects of Heat Conduction in Circular Cylinders of Functionally Graded Materials and Laminated Composites
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5741
5747
.
23.
Asgari
,
M.
, and
Akhlaghi
,
M.
, “
Transient Heat Conduction in Two-Dimensional Functionally Graded Hollow Cylinder With Finite Length
,”
Heat Mass Transfer
,
45
(
11
), pp.
1383
1392
.
24.
Tonini
,
S.
, and
Cossali
,
G. E.
,
2012
, “
A Novel Analytical Solution of the Non-Uniform Convective Boundary Conditions Problem for Heat Conduction in Cylinders
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1059
1065
.
25.
Wang
,
H. M.
,
2013
, “
An Effective Approach for Transient Thermal Analysis in a Functionally Graded Hollow Cylinder
,”
Int. J. Heat Mass Transfer
,
67
, pp.
499
505
.
26.
Daneshjou
,
K.
,
Bakhtiari
,
M.
,
Alibakhshi
,
R.
, and
Fakoor
,
M.
,
2015
, “
Transient Thermal Analysis in 2D Orthotropic FG Hollow Cylinder With Heat Source
,”
Int. J. Heat Mass Transfer
,
89
, pp.
977
984
.
27.
Singh
,
S.
,
Jain
,
P. K.
, and
Uddin
,
R.
,
2011
, “
Finite Integral Transform Method to Solve Asymmetric Heat Conduction in A Multilayer Annulus With Time-Dependent Boundary Conditions
,”
J. Nucl. Eng. Des.
,
241
(
1
), pp.
144
154
.
28.
Singh
,
S.
,
Jain
,
P. K.
, and
Uddin
,
R.
,
2008
, “
Analytical Solution to Transient Heat Conduction in Polar Coordinates With Multiple Layers in Radial Direction
,”
Int. J. Therm. Sci.
,
47
(
3
), pp.
261
273
.
29.
Chen
,
W. Q.
,
Bian
,
Z. G.
,
Lv
,
C. F.
, and
Ding
,
H. J.
,
2004
, “
3D Free Vibration Analysis of a Functionally Graded Piezoelectric Hollow Cylinder Filled With Compressible Fluid
,”
Int. J. Solids Struct.
,
41
(
3–4
), pp.
947
964
.
30.
Hasheminejad
,
S. M.
, and
Rajabi
,
M.
,
2007
, “
Acoustic Scattering Characteristics of a Thick-Walled Orthotropic Cylindrical Shell at Oblique Incidence
,”
Ultrasonics
,
47
(
1–4
), pp.
32
48
.
31.
Powers
,
J. M.
,
2004
, “
On the Necessity of Positive Semi-Definite Conductivity and Onsager Reciprocity in Modelling Heat Conduction in Anisotropic Media
,”
ASME J. Heat Transfer
,
126
(
5
), pp.
670
675
.
32.
Rajabi
,
M.
, and
Hasheminejad
,
S. M.
,
2009
, “
Acoustic Resonance Scattering From a Multilayered Cylindrical Shell With Imperfect Bonding
,”
Ultrasonics
,
49
(
8
), pp.
682
695
.
You do not currently have access to this content.