This study presents results on the hydrodynamic and thermal characteristics of single-phase water flows inside microchannels (MCs) with different micropin fin (MPF) configurations. Different inline arrangements of micropin fins were considered over Reynolds numbers ranging from 20 to 160. The computational studies were performed using the commercial software ansys 14.5. The hydrodynamic performances of the configurations were compared using two parameters, namely, pressure drop and friction factor while the comparison in their thermal and thermal-hydraulic performances were based on Nusselt number and thermal performance index (TPI). Wake-pin fin interactions were carefully analyzed through streamline patterns in different arrangements and under different flow conditions. The results showed strong dependencies of all four evaluated performance parameters on the vertical pitch ratio (ST/D). Weaker dependencies on height over diameter ratio (H/D), horizontal pitch ratio (SL/D), and minimum available area (Amin) were observed. With an increase in the Reynolds number, extension of the wake regions behind MPFs was observed to be the paramount factor in increasing pressure drop and Nusselt number. Regarding TPI, two adverse trends were observed corresponding to different ST/D ratios, while the effect of SL/D ratio was unique. For friction factors, H/D and SL/D ratios of 1 and 1.5, respectively, led to minimum values, while different ST/D ratios are needed for each diameter size for the maximum performance. Moreover, a twofold increase in Reynolds number resulted in about 40% decrease in friction factor in each configuration.

References

References
1.
Epstein
,
A. H.
,
Senturia
,
S. D.
,
Al-Midani
,
O.
,
Anathasuresh
,
G.
,
Ayon
,
A.
,
Breuer
,
K.
,
Chen
,
K. S.
,
Enrich
,
F. E.
,
Esteve
,
E.
,
Frechette
,
L.
,
Gauba
,
G.
,
Ghodssi
,
R.
,
Groshenry
,
C.
,
Jacobson
,
S.
,
Kerrebrock
,
J. L.
,
Lang
,
J. H.
,
Lin
,
C. C.
,
London
,
A.
,
Lopata
,
J.
,
Mehra
,
A.
,
Miranda
,
J. O. M.
,
Nagle
,
S.
,
Orr
,
D. J.
,
Piekos
,
E.
,
Schmidt
,
M. A.
,
Shirley
,
G.
,
Spearing
,
S. M.
,
Tan
,
C. S.
,
Tzeng
,
Y. S.
, and
Waitz
,
I. A.
,
1997
, “
Micro-Heat Engines, Gas Turbines, and Rocket Engines—The Mit Microengine Project
,”
28th Fluid Dynamics Conference
, Snowmass Village, CO, June 29–July 2, AIAA Paper No. 1773.
2.
Kamper
,
K. P.
,
Ehrfeld
,
W.
,
Dopper
,
J.
,
Hessel
,
V.
,
Lehr
,
H.
,
Lowe
,
H.
,
Richter
,
T.
, and
Wolf
,
A.
,
1997
, “
Microfluidic Components for Biological and Chemical Microreactors
,”
IEEE Tenth Annual International Workshop on Micro Electro Mechanical Systems—An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots
, pp.
338
343
.
3.
Koo
,
J. M.
,
Im
,
S.
,
Jiang
,
L.
, and
Goodson
,
K. E.
,
2005
, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
49
58
.
4.
Kleinstreuer
,
C.
,
Li
,
J.
, and
Koo
,
J.
,
2008
, “
Microfluidics of Nano-Drug Delivery
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5590
5597
.
5.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
6.
Tuckerman
,
D. B.
,
1984
, “
Heat-Transfer Microstructures for Integrated Circuits
,” Ph.D. thesis, University of California, Livermore, CA.
7.
Harms
,
T. M.
,
Kazmierczak
,
M. J.
, and
Gerner
,
F. M.
,
1999
, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
,
20
(
2
), pp.
149
157
.
8.
Mala
,
G. M.
, and
Li
,
D.
,
1999
, “
Flow Characteristics of Water in Microtubes
,”
Int. J. Heat Fluid Flow
,
20
(
2
), pp.
142
148
.
9.
Toh
,
K. C.
,
Chen
,
X. Y.
, and
Chai
,
J. C.
,
2002
, “
Numerical Computation of Fluid Flow and Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
26
), pp.
5133
5141
.
10.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.
11.
Gamrat
,
G.
,
Favre-Marinet
,
M.
, and
Asendrych
,
D.
,
2005
, “
Conduction and Entrance Effects on Laminar Liquid Flow and Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2943
2954
.
12.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.
13.
Li
,
Z.
,
He
,
Y. L.
,
Tang
,
G. H.
, and
Tao
,
W. Q.
,
2007
, “
Experimental and Numerical Studies of Liquid Flow and Heat Transfer in Microtubes
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3447
3460
.
14.
Kandlikar
,
S. G.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Amsterdam, The Netherlands
.
15.
Li
,
Z.
,
Huai
,
X.
,
Tao
,
Y.
, and
Chen
,
H.
,
2007
, “
Effects of Thermal Property Variations on the Liquid Flow and Heat Transfer in Microchannel Heat Sinks
,”
Appl. Therm. Eng.
,
27
(17–18), pp.
2803
2814
.
16.
Koşar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
419
430
.
17.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.
18.
Koşar
,
A.
, and
Peles
,
Y.
,
2006
, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
,
128
(
2
), pp.
121
131
.
19.
Koşar
,
A.
, and
Peles
,
Y.
,
2007
, “
Micro Scale Pin Fin Heat Sinks—Parametric Performance Evaluation Study
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
4
), pp.
855
865
.
20.
Siu-Ho
,
A.
,
Qu
,
W.
, and
Pfefferkorn
,
F.
,
2006
, “
Pressure Drop and Heat Transfer in a Single-Phase Micropin-Fin Heat Sink
,”
ASME
Paper No. IMECE2006-14777.
21.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Liquid Single-Phase Flow in an Array of Micro Pin Fins—Part 1: Heat Transfer Characteristics
,”
ASME J. Heat Transfer
,
130
(
12
), p.
122402
.
22.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Liquid Single-Phase Flow in an Array of Micro Pin Fins—Part 2: Pressure Drop Characteristics
,”
ASME J. Heat Transfer
,
130
(
12
), p.
124501
.
23.
Prasher
,
R. S.
,
Dirner
,
J.
,
Chang
,
J. Y.
,
Myers
,
A.
,
Chau
,
D.
,
He
,
D.
, and
Prstic
,
S.
,
2007
, “
Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micropin-Fins Under Cross Flow for Water as Fluid
,”
ASME J. Heat Transfer
,
129
(
2
), pp.
141
153
.
24.
John
,
T. J.
,
Mathew
,
B.
, and
Hegab
,
H.
,
2010
, “
Parametric Study on the Combined Thermal and Hydraulic Performance of Single Phase Micro Pin-Fin Heat Sinks Part I: Square and Circle Geometries
,”
Int. J. Therm. Sci.
,
49
(
11
), pp.
2177
2190
.
25.
Rubio-Jimenez
,
C. A.
,
Kandlikar
,
S. G.
, and
Hernandez-Guerrero
,
A.
,
2012
, “
Numerical Analysis of Novel Micro Pin Fin Heat Sink With Variable Fin Density
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
2
(
5
), pp.
825
833
.
26.
Tullius
,
J. F.
,
Tullius
,
T. K.
, and
Bayazitoglu
,
Y.
,
2012
, “
Optimization of Short Micro Pin Fins in Minichannels
,”
Int. J. Heat Mass Transfer
,
55
(15–16), pp.
3921
3932
.
27.
Koz
,
M.
,
Ozdemir
,
M. R.
, and
Koşar
,
A.
,
2011
, “
Parametric Study on the Effect of End Walls on Heat Transfer and Fluid Flow Across a Micro Pin-Fin
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1073
1084
.
28.
Izci
,
T.
,
Koz
,
M.
, and
Koşar
,
A.
,
2015
, “
The Effect of Micro Pin-Fin Shape on Thermal and Hydraulic Performance of Micro Pin-Fin Heat Sinks
,”
Heat Transfer Eng.
,
36
(
17
), pp.
1447
1457
.
29.
Mita
,
J.
, and
Qu
,
W.
,
2015
, “
Pressure Drop of Water Flow Across a Micro-Pin-Fin Array Part 1: Isothermal Liquid Single-Phase Flow
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1073
1082
.
30.
Zhao
,
H.
,
Liu
,
Z.
,
Zhang
,
C.
,
Guan
,
N.
, and
Zhao
,
H.
,
2016
, “
Pressure Drop and Friction Factor of a Rectangular Channel With Staggered Mini Pin Fins of Different Shapes
,”
Exp. Therm. Fluid Sci.
,
71
, pp.
57
69
.
You do not currently have access to this content.