The classical problem of constrained melting heat transfer of a phase change material (PCM) inside a spherical capsule was revisited experimentally in the presence of nanoscale thermal conductivity fillers. The model nano-enhanced PCM (NePCM) samples were prepared by dispersing self-synthesized graphite nanosheets (GNSs) into 1-dodecanol at various loadings up to 1% by mass. The melting experiments were carried out using an indirect method by measuring the instantaneous volume expansion upon melting. The data analysis was performed based on the homogeneous, single-component assumption for NePCM with modified thermophysical properties. It was shown that the introduction of nanofillers increases the effective thermal conductivity of NePCM, in accompaniment with an undesirable rise in viscosity. The dramatic viscosity growth, up to over 100-fold at the highest loading, deteriorates significantly the intensity of natural convection, which was identified as the dominant mode of heat transfer during constrained melting. The loss in natural convection was found to overweigh the decent enhancement in heat conduction, thus resulting in decelerated melting in the presence of nanofillers. Except for the case with the lowest heating boundary temperature, a monotonous slowing trend of melting was observed with increasing the loading.

References

1.
Dhaidan
,
N. D.
, and
Khodadadi
,
J. M.
,
2015
, “
Melting and Convection of Phase Change Materials in Different Shape Containers: A Review
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
449
477
.
2.
Tan
,
F. L.
,
2008
, “
Constrained and Unconstrained Melting Inside a Sphere
,”
Int. Commun. Heat Mass Transfer
,
35
(
4
), pp.
466
475
.
3.
Moore
,
F. E.
, and
Bayazitoglu
,
Y.
,
1982
, “
Melting Within a Spherical Enclosure
,”
ASME J. Heat Transfer
,
104
(
1
), pp.
19
23
.
4.
Roy
,
S. K.
, and
Sengupta
,
S.
,
1987
, “
The Melting Process Within Spherical Enclosures
,”
ASME J. Heat Transfer
,
109
(
2
), pp.
460
462
.
5.
Bahrami
,
P. A.
, and
Wang
,
T. G.
,
1987
, “
Analysis of Gravity and Conduction Driven Melting in a Sphere
,”
ASME J. Heat Transfer
,
109
(
3
), pp.
806
809
.
6.
Fomin
,
S. A.
, and
Saitoh
,
T. S.
,
1990
, “
Melting of Unfixed Material in Spherical Capsule With Non-Isothermal Wall
,”
Int. J. Heat Mass Transfer
,
42
(
22
), pp.
4197
4205
.
7.
Assis
,
E.
,
Katsman
,
L.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2007
, “
Numerical and Experimental Study of Melting in a Spherical Shell
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1790
1804
.
8.
Hosseinizadeh
,
S. F.
,
Darzi
,
A. A. R.
,
Tan
,
F. L.
, and
Khodadadi
,
J. M.
,
2013
, “
Unconstrained Melting Inside a Sphere
,”
Int. J. Therm. Sci.
,
63
, pp.
55
64
.
9.
Archibold
,
A. R.
,
Gonzalez-Aguilar
,
J.
,
Rahman
,
M. M.
,
Goswami
,
D. Y.
,
Romero
,
M.
, and
Stefanakos
,
E. K.
,
2014
, “
The Melting Process of Storage Materials With Relatively High Phase Change Temperatures in Partially Filled Spherical Shells
,”
Appl. Energy
,
116
, pp.
243
252
.
10.
Khodadadi
,
J. M.
, and
Zhang
,
Y.
,
2001
, “
Effects of Buoyancy-Driven Convection on Melting Within Spherical Containers
,”
Int. J. Heat Mass Transfer
,
44
(
8
), pp.
1605
1618
.
11.
Tan
,
F. L.
,
Hosseinizadeh
,
S. F.
,
Khodadadi
,
J. M.
, and
Fan
,
L.
,
2009
, “
Experimental and Computational Study of Constrained Melting of Phase Change Materials (PCM) Inside a Spherical Capsule
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3464
3472
.
12.
Galione
,
P. A.
,
Lehmkuhl
,
O.
,
Rigola
,
J.
, and
Oliva
,
A.
,
2015
, “
Fixed-Grid Numerical Modeling of Melting and Solidification Using Variable Thermo-Physical Properties–Application to the Melting of n-Octadecane Inside a Spherical Capsule
,”
Int. J. Heat Mass Transfer
,
86
, pp.
721
743
.
13.
Khodadadi
,
J. M.
,
Fan
,
L.
, and
Babaei
,
H.
,
2013
, “
Thermal Conductivity Enhancement of Nanostructure-Based Colloidal Suspensions Utilized as Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
418
444
.
14.
Weinstein
,
R. D.
,
Kopec
,
T. C.
,
Fleischer
,
A. S.
,
D’Addio
,
E.
, and
Bessel
,
C. A.
,
2008
, “
The Experimental Exploration of Embedding Phase Change Materials With Graphite Nanofibers for the Thermal Management of Electronics
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042405
.
15.
Chintakrinda
,
K.
,
Weinstein
,
R. D.
, and
Fleischer
,
A. S.
,
2011
, “
A Direct Comparison of Three Different Material Enhancement Methods on the Transient Thermal Response of Paraffin Phase Change Material Exposed to High Heat Fluxes
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1639
1647
.
16.
Ho
,
C. J.
, and
Gao
,
J. Y.
,
2013
, “
An Experimental Study on Melting Heat Transfer of Paraffin Dispersed With Al2O3 Nanoparticles in a Vertical Enclosure
,”
Int. J. Heat Mass Transfer
,
62
, pp.
2
8
.
17.
Zeng
,
Y.
,
Fan
,
L.-W.
,
Xiao
,
Y.-Q.
,
Yu
,
Z.-T.
, and
Cen
,
K.-F.
,
2013
, “
An Experimental Investigation of Melting of Nanoparticle-Enhanced Phase Change Materials (NePCMs) in a Bottom-Heated Vertical Cylindrical Cavity
,”
Int. J. Heat Mass Transfer
,
66
, pp.
111
117
.
18.
Dhaidan
,
N. S.
,
Khodadadi
,
J. M.
,
Al-Hattab
,
T. A.
, and
Al-Mashat
,
S. M.
,
2013
, “
Experimental and Numerical Investigation of Melting of Phase Change Material/Nanoparticle Suspensions in a Square Container Subjected to a Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
66
, pp.
672
683
.
19.
Dhaidan
,
N. S.
,
Khodadadi
,
J. M.
,
Al-Hattab
,
T. A.
, and
Al-Mashat
,
S. M.
,
2013
, “
Experimental and Numerical Investigation of Melting of NePCM Inside an Annular Container Under a Constant Heat Flux Including the Effect of Eccentricity
,”
Int. J. Heat Mass Transfer
,
67
, pp.
455
468
.
20.
Dhaidan
,
N. S.
,
Khodadadi
,
J. M.
,
Al-Hattab
,
T. A.
, and
Al-Mashat
,
S. M.
,
2013
, “
Experimental and Numerical Study of Constrained Melting of n-Octadecane With CuO Nanoparticle Dispersions in a Horizontal Cylindrical Capsule Subjected to a Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
67
, pp.
523
534
.
21.
Fan
,
L.-W.
,
Zhu
,
Z.-Q.
,
Zeng
,
Y.
,
Lu
,
Q.
, and
Yu
,
Z.-T.
,
2014
, “
Heat Transfer During Melting of Graphene-Based Composite Phase Change Materials Heated From Below
,”
Int. J. Heat Mass Transfer
,
79
, pp.
94
104
.
22.
Fan
,
L.-W.
,
Zhu
,
Z.-Q.
,
Zeng
,
Y.
,
Ding
,
Q.
, and
Liu
,
M.-J.
,
2016
, “
Unconstrained Melting Heat Transfer in a Spherical Container Revisited in the Presence of Nano-Enhanced Phase Change Materials (NePCM)
,”
Int. J. Heat Mass Transfer
,
95
, pp.
1057
1069
.
You do not currently have access to this content.