Heat transfer in a metal cut by a moving arc jet is considered using the method of superposition of heat sources and sinks. The heat sources are located at the plasma–liquid metal boundary, heat sinks—at the melting front. Special attention is paid to the influence of the molten metal layer that separates the plasma and not yet molten metal. It is shown that this layer hampers heat transfer to the melting front. Neglecting its heat resistance could lead to a very substantial errors especially at high cutting speeds. The thicker the layer and/or the higher the cutting speed, the more power is necessary to perform the cut and the higher the average temperature of the melt. Estimations show that power carried out by the removed melt could reach half of the total power necessary to make the cut. The suggested method allows one to include the heat of heterogeneous reaction of oxidation at the melting front. The method could be applied to describe other types of metal cutting with a moving concentrated heat source.

References

References
1.
Rosenthal
,
D.
,
1941
, “
Mathematical Theory of Heat Distribution During Welding and Cutting
,”
Weld. J.
,
20
, pp.
220s
234s
.
2.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
2nd ed.
,
Oxford University Press
,
New York, NY
.
3.
Rykalin
,
N. N.
,
1951
,
Calculation of Heat Processes in Welding
,
Mashgiz
,
Moscow, Russia
(in Russian) [German Translation: Rykalin, N. N., 1952, Die Wärmegrundlagen des Schweißvorganges, Verlag Technik, Berlin].
4.
Swift-Hook
,
D. T.
, and
Gick
,
A. E. F.
,
1973
, “
Penetration Welding With Lasers
,”
Weld. J.
,
52
, pp.
492s
499s
.
5.
Collat
,
T. J.
,
Vicanek
,
M.
, and
Simon
,
G.
,
1994
, “
Heat Transport in Melt Flowing Past the Keyhole in Deep Penetration Welding
,”
J. Phys. D: Appl. Phys.
,
27
(
10
), pp.
2035
2040
.
6.
Mazumder
,
J.
, and
Steen
,
W. M.
,
1980
, “
Heat Transfer Model for CW Laser Material Processing
,”
J. Appl. Phys.
,
51
(
2
), pp.
941
947
.
7.
Toshiyuki
,
M.
, and
Geidt
,
W. H.
,
1982
, “
Heat Transfer From Elliptical Cylinder Moving Through an Infinite Plate Applied to Electron Beam Welding
,”
Int. J. Heat Mass Transfer
,
25
(
6
), pp.
807
814
.
8.
Schulz
,
W.
,
Simon
,
G.
,
Urbassek
,
H. M.
, and
Decker
,
I.
,
1987
, “
On Laser Fusion Cutting of Metals
,”
J. Phys. D: Appl. Phys.
,
20
(
4
), pp.
481
488
.
9.
Kaplan
,
A. F. H.
,
1996
, “
An Analytical Model of Metal Cutting With a Laser Beam
,”
J. Appl. Phys.
,
79
(
5
), pp.
2198
2208
.
10.
Baeva
,
M.
,
Baev
,
P.
, and
Kaplan
,
A.
,
1997
, “
An Analysis of the Heat Transfer From a Moving Elliptical Cylinder
,”
J. Phys. D: Appl. Phys.
,
30
(
8
), pp.
1190
1196
.
11.
Semak
,
V. V.
,
Bragg
,
W. D.
,
Damkroger
,
B.
, and
Kempka
,
S.
,
1999
, “
Transient Model for the Keyhole During Laser Welding
,”
J. Phys. D: Appl. Phys.
,
32
(
15
), pp.
L61
L64
.
12.
Bunting
,
K. A.
, and
Cornfield
,
G.
,
1975
, “
Toward a General Theory of Cutting: A Relationship Between the Incident Power Density and the Cut Speed
,”
ASME J. Heat Transfer
,
97
(
1
), pp.
116
122
.
13.
Nemchinsky
,
V.
,
1997
, “
Dross Formation and Heat Transfer During Plasma Arc Cutting
,”
J. Phys. D: Appl. Phys.
,
30
(
18
), pp.
2566
2572
.
14.
Nemchinsky
,
V.
,
2011
, “
Temperature Created by a Tilted Moving Heat Source: Heating Line and Cylinder
,”
ASME J. Heat Transfer
,
133
(
2
), p.
021301
.
15.
Gariboldi
,
E.
, and
Previtali
,
B.
,
2005
, “
High Tolerance Plasma Arc Cutting of Commercially Pure Titanium
,”
J. Mater. Process. Technol.
,
160
(
1
), pp.
77
89
.
16.
Nemchinsky
,
V.
, and
Severance
,
S.
,
2009
, “
Plasma Arc Cutting: Speed and Cut Quality
,”
J. Phys. D: Appl. Phys.
,
42
(
19
), p.
195204
.
17.
Teulet
,
Ph.
,
Girard
,
L.
,
Razafinimanana
,
M.
,
Gleizes
,
A.
,
Bertrand
,
Ph.
,
Camy-Peyret
,
F.
,
Baillot
,
E.
, and
Richard
,
F.
,
2006
, “
Experimental Study of an Oxygen Plasma Cutting Torch: II. Arc–Material Interaction, Energy Transfer and Anode Attachment
,”
J. Phys. D: Appl. Phys.
,
39
(
8
), pp.
1557
1573
.
18.
Kavka
,
T.
,
Tossen
,
S.
,
Maslani
,
A.
,
Konrad
,
M.
,
Pauser
,
H.
, and
Stehrer
,
T.
,
2014
, “
Experimental Investigation of Energy Balance in Plasma Arc Cutting Process
,”
J. Phys.: Conf. Ser.
,
511
, p.
012067
.
19.
Arata
,
Y.
,
Maruo
,
H.
,
Miyamoto
,
I.
, and
Takeuchi
,
S.
,
1979
, “
Dynamic Behaviour in Laser Gas Cutting of Mild Steel
,”
Trans. Jpn. Weld. Res. Inst.
,
8
, pp.
15
26
.
20.
Schuocker
,
D.
,
1986
, “
Dynamic Phenomena in Laser Cutting and Cut Quality
,”
Appl. Phys. B
,
40
(
1
), pp.
9
14
.
21.
Vicanek
,
M.
,
Simon
,
G.
,
Urbassek
,
H. M.
, and
Decker
,
I.
,
1987
, “
Hydrodynamical Instability of Melt Flow in Laser Cutting
,”
J. Phys. D: Appl. Phys.
,
20
(
1
), pp.
140
145
.
22.
Kaplan
,
A. F. H.
,
Wangler
,
O.
, and
Schuocker
,
D.
,
1997
, “
Laser Cutting: Fundamentals of the Periodic Striations and Their On-Line Detection
,”
Lasers Eng.
,
6
, pp.
103
126
.
23.
Chen
,
K.
, and
Yao
,
Y. L.
,
1999
, “
Striation Formation and Melt Removal in the Laser Cutting Process
,”
J. Manuf. Process.
,
1
(
1
), pp.
43
54
.
24.
Sobih
,
M.
,
Crouse
,
P. L.
, and
Li
,
L.
,
2007
, “
Elimination of Striation in Laser Cutting of Mild Steel
,”
J. Phys. D: Appl. Phys.
,
40
(
22
), pp.
6908
6916
.
25.
Nemchinsky
,
V. A.
,
1996
, “
Liquid Metal Movement During Plasma Arc Cutting
,”
Weld. J.
,
75
(
12
), pp.
388s
392s
.
26.
Teste
,
Ph.
,
Leblanc
,
T.
,
Rossignol
,
J.
, and
Andlauer
,
2008
, “
Contribution to the Assessment of the Power Balance at the Electrodes of an Electric Arc in Air
,”
Plasma Sources Sci. Technol.
,
17
(
3
), p.
035001
.
You do not currently have access to this content.