Convective heat transfer of an impinging jet is numerically evaluated for piston cooling process. A circular jet of subcooled engine oil that impinges normally onto the inner surface of the piston for an engine operating at normal condition is considered in the study. The kω shear stress transport (SST) based on transient three-dimensional governing Navier–Stokes (Reynolds-averaged Navier–Stokes (RANS)) equations are computationally solved using a finite-volume technique. The conjugate heat transfer method is used to obtain a coupled heat transfer solution between the solid and fluid regions, to predict the heat transfer coefficient at the piston walls and then the temperature distribution in the piston. It is shown that the cooling jet can significantly decrease the piston temperature. The location of the incidence of maximum heat transfer coefficient is moved away from the impingement point as the nozzle size increases.

References

References
1.
Nasif
,
G.
,
Barron
,
R. M.
, and
Balachandar
,
R.
,
2014
, “
Heat Transfer Due to an Impinging Jet in a Confined Space
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112202
.
2.
Liu
,
X.
,
Lienhard
,
J. H.
, and
Lombara
,
J. S.
,
1991
, “
Convective Heat Transfer by Impingement of Circular Liquid Jets
,”
ASME J. Heat Transfer
,
113
(
3
), pp.
571
582
.
3.
Liu
,
X.
, and
Lienhard
,
J. H.
,
1989
, “
Liquid Jet Impingement Heat Transfer on a Uniform Flux Surface
,”
Heat Transfer Phenomena in Radiation, Combustion, and Fires
, Vol.
106
,
ASME
,
New York, NY
, pp.
523
530
.
4.
Lienhard
,
J. H.
,
2006
, “
Heat Transfer by Impingement of Circular Free-Surface Liquid Jets
,”
18th National and 7th ISHMT-ASME Heat and Mass Transfer Conference
, Guwahati, India, Jan. 4–6.
5.
Stevens
,
J.
, and
Webb
,
B. W.
,
1991
, “
Local Heat Transfer Coefficients Under an Axisymmetric, Single-Phase Liquid Jet
,”
ASME J. Heat Transfer
,
113
(
1
), pp.
71
78
.
6.
Nasif
,
G.
,
Barron
,
R. M.
, and
Balachandar
,
R.
,
2014
, “
Heat Transfer Characteristics of Jet Impingement Onto Heated Disc Bounded by a Cylindrical Wall
,”
Tenth International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
,
HEFAT 2014
, Orlando, FL, July 14–16, pp.
441
447
.http://hdl.handle.net/2263/44465
7.
Agarwal
,
A. K.
,
Goyal
,
S. K.
, and
Srivastava
,
D. K.
,
2011
, “
Time Resolved Numerical Modeling of Oil Jet Cooling of a Medium Duty Diesel Engine Piston
,”
Int. Commun. Heat Mass Transfer
,
38
(
8
), pp.
1080
1085
.
8.
Stevens
,
J.
,
Pan
,
Y.
, and
Webb
,
B. W.
,
1992
, “
Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetric, Impinging Free-Surface Liquid Jets: Part 1—Turbulent Flow Structure
,”
ASME J. Heat Transfer
,
114
(
4
), pp.
874
879
.
9.
Pan
,
Y.
,
Stevens
,
J.
, and
Webb
,
B. W.
,
1992
, “
Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetric, Impinging Free-Surface Liquid Jets: Part 2—Local Heat Transfer
,”
ASME J. Heat Transfer
,
114
(
4
), pp.
880
886
.
10.
CD-adapco
,
2013
, “
STAR-CCM+ V8.06.007: User Manual
,” CD-adapco, Melville, NY.
11.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
,
Harlow, UK
.
12.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
13.
Leonard
,
B. P.
,
1991
, “
The ULTIMATE Conservative Difference Scheme Applied to Unsteady One-Dimensional Advection
,”
Comput. Methods Appl. Mech. Eng.
,
88
(
1
), pp.
17
74
.
14.
Ubbink
,
O.
, and
Issa
,
R. I.
,
1999
, “
Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes
,”
J. Comput. Phys.
,
153
(
1
), pp.
26
50
.
15.
Muzaferija
,
S.
,
Peric
,
M.
,
Sames
,
P.
, and
Schelin
,
T.
,
1998
, “
A Two-Fluid Navier–Stokes Solver to Simulate Water Entry
,”
22nd Symposium on Naval Hydrodynamics
, Washington, DC, Aug. 9–14, pp.
277
289
.
16.
Waclawczyk
,
T.
, and
Koronowicz
,
T.
,
2008
, “
Comparison of CICSAM and HRIC High-Resolution Schemes for Interface Capturing
,”
J. Theor. Appl. Mech.
,
46
(
2
), pp.
325
345
.http://ptmts.org/jtam/index.php/jtam/article/view/v46n2p325
17.
Hoffmann
,
K.
, and
Chiang
,
S.
,
2000
,
Computational Fluid Dynamics
,
4th ed.
, Vol.
3
,
Engineering Education System
,
Wichita, KS
.
18.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
19.
Pozzi
,
A.
, and
Lupo
,
M.
,
1988
, “
The Coupling of Conduction With Laminar Natural Convection Along a Flat Plate
,”
Int. J. Heat Mass Transfer
,
31
(
9
), pp.
1807
1814
.
20.
Vynnycky
,
M.
, and
Kimura
,
S.
,
1996
, “
Transient Conjugate Free Convection Due to a Heated Vertical Plate
,”
Int. J. Heat Mass Transfer
,
39
(
5
), pp.
1067
1080
.
21.
Nasif
,
G.
,
2014
, “
CFD Simulation of Oil Jets With Application to Piston Cooling
,”
Ph.D. dissertation
, University of Windsor, Windsor, ON, Canada.http://scholar.uwindsor.ca/etd/5214/
22.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2011
,
Heat and Mass Transfer: Fundamental and Application
,
4th ed.
,
McGraw-Hill
,
New York, NY
.
23.
Kortendijk
,
J. A.
,
2005
, “
Measurement of Piston Ring Temperature
,” Eindhoven University of Technology, Department of Mechanical Engineering, Division Thermo Fluids Engineering, Eindhoven, Netherlands, Report No. WVT 2005.10.
24.
Sharan
,
A.
,
1984
, “
Jet-Disc Boiling Burnout Predictions and Application to Solar Receivers
,” Master's thesis, Mechanical Engineering, University of Houston, Houston, TX.
25.
Nasif
,
G.
,
Barron
,
R. M.
, and
Balachandar
,
R.
,
2013
, “
Jet Impingement Heat Transfer: Moving Disc
,”
ASME
Paper No. HMTC1300891.
You do not currently have access to this content.