We analytically consider the effect of meniscus curvature on heat transfer to laminar flow across structured surfaces. The surfaces considered are composed of ridges. Curvature of the menisci, which separates liquid in the Cassie state and gas trapped in cavities between the ridges, results from the pressure difference between the liquid and the gas. A boundary perturbation approach is used to develop expressions that account for the change in the temperature field in the limit of small curvature of a meniscus. The meniscus is considered adiabatic and a constant heat flux boundary condition is prescribed at the tips of the ridges in a semi-infinite and periodic domain. A solution for a constant temperature ridge is also presented using existing results from a mathematically equivalent hydrodynamic problem. We provide approximate expressions for the apparent thermal slip length as function of solid fraction over a range of small meniscus protrusion angles. Numerical results show good agreement with the perturbation results for protrusion angles up to ± 20 deg.

References

References
1.
Steigerwalt Lam
,
L.
,
Hodes
,
M.
, and
Enright
,
R.
,
2015
, “
Analysis of Galinstan-Based Microgap Cooling Enhancement Using Structured Surfaces
,”
ASME J. Heat Transfer
,
137
(
9
), p.
091003
.
2.
Zhao
,
Y.
,
Liu
,
Y.
,
Xu
,
Q.
,
Barahman
,
M.
, and
Lyons
,
A. M.
,
2015
, “
Catalytic, Self-Cleaning Surface With Stable Superhydrophobic Properties: Printed Polydimethylsiloxane (PDMS) Arrays Embedded With TiO2 Nanoparticles
,”
ACS Appl. Mater. Interfaces
,
7
(
4
), pp.
2632
2640
.
3.
Navier
,
C.
,
1823
, “
Mémoire sur les du mouvement des fluids
,”
Mém. l'Académie R. Sci. l'Institut Fr.
,
6
, pp.
389
440
.
4.
Kennard
,
E. H.
,
1938
,
Kinetic Theory of Gases
,
1st ed.
,
McGraw-Hill
,
New York
.
5.
Inman
,
R. M.
,
1964
, “
Laminar Slip Flow Heat Transfer in a Parallel-Plate Channel or a Round Tube With Uniform Wall Heating
,” NASA, Washington, DC, Technical Note D-2393.
6.
Enright
,
R.
,
Hodes
,
M.
,
Salamon
,
T.
, and
Muzychka
,
Y.
,
2014
, “
Isoflux Nusselt Number and Slip Length Formulae for Superhydrophobic Microchannels
,”
ASME J. Heat Transfer
,
136
(
1
), p.
012402
.
7.
Steigerwalt Lam
,
L.
,
Melnick
,
C.
,
Hodes
,
M.
,
Ziskind
,
G.
, and
Enright
,
R.
,
2014
, “
Nusselt Numbers for Thermally Developing Couette Flow With Hydrodynamic and Thermal Slip
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051703
.
8.
Ng
,
C.-O.
, and
Wang
,
C. Y.
,
2014
, “
Temperature Jump Coefficient for Superhydrophobic Surfaces
,”
ASME J. Heat Transfer
,
136
(
6
), p.
064501
.
9.
Hodes
,
M.
,
Steigerwalt Lam
,
L.
,
Cowley
,
A.
,
Enright
,
R.
, and
MacLachlan
,
S.
,
2015
, “
Effect of Evaporation and Condensation at Menisci on Apparent Thermal Slip
,”
ASME J. Heat Transfer
,
137
(
7
), p.
071502
.
10.
Davies
,
J.
,
Maynes
,
D.
,
Webb
,
B. W.
, and
Woolford
,
B.
,
2006
, “
Laminar Flow in a Microchannel With Superhydrophobic Walls Exhibiting Transverse Ribs
,”
Phys. Fluids
,
18
(
8
), p.
087110
.
11.
Maynes
,
D.
,
Jeffs
,
K.
,
Woolford
,
B.
, and
Webb
,
B. W.
,
2007
, “
Laminar Flow in a Microchannel With Hydrophobic Surface Patterned Microribs Oriented Parallel to the Flow Direction
,”
Phys. Fluids
,
19
(
9
), p.
093603
.
12.
Teo
,
C. J.
, and
Khoo
,
B. C.
,
2008
, “
Analysis of Stokes Flow in Microchannels With Superhydrophobic Surfaces Containing a Periodic Array of Micro-Grooves
,”
Microfluid. Nanofluid.
,
7
(
3
), pp.
353
382
.
13.
Cheng
,
Y.
,
Teo
,
C.
, and
Khoo
,
B.
,
2009
, “
Microchannel Flows With Superhydrophobic Surfaces: Effects of Reynolds Number and Pattern Width to Channel Height Ratio
,”
Phys. Fluids
,
21
(
12
), p.
122004
.
14.
Maynes
,
D.
, and
Crockett
,
J.
,
2014
, “
Apparent Temperature Jump and Thermal Transport in Channels With Streamwise Rib and Cavity Featured Superhydrophobic Walls at Constant Heat Flux
,”
ASME J. Heat Transfer
,
136
(
1
), p.
011701
.
15.
Cheng
,
Y.
,
Xu
,
J.
, and
Sui
,
Y.
,
2014
, “
Numerical Study on Drag Reduction and Heat Transfer Enhancement in Microchannels With Superhydrophobic Surfaces for Electronic Cooling
,”
Appl. Therm. Eng.
,
88
, pp.
1
11
.
16.
Ybert
,
C.
,
Barentin
,
C.
,
Cottin-Bizonne
,
C.
,
Joseph
,
P.
, and
Bocquet
,
L.
,
2007
, “
Achieving Large Slip With Superhydrophobic Surfaces: Scaling Laws for Generic Geometries
,”
Phys. Fluids
,
19
(
12
), p.
123601
.
17.
Bocquet
,
L.
, and
Barrat
,
J.-L.
,
2007
, “
Flow Boundary Conditions From Nano- to Micro-Scales
,”
Soft Matter
,
3
(
6
), pp.
685
693
.
18.
Sbragaglia
,
M.
, and
Prosperetti
,
A.
,
2007
, “
A Note on the Effective Slip Properties for Microchannel Flows With Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
19
(
4
), p.
043603
.
19.
Crowdy
,
D.
,
2010
, “
Slip Length for Longitudinal Shear Flow Over a Dilute Periodic Mattress of Protruding Bubbles
,”
Phys. Fluids
,
22
(
12
), p.
121703
.
20.
Crowdy
,
D.
,
2016
, “
Analytical Formulae for Longitudinal Slip Lengths Over Unidirectional Superhydrophobic Surfaces With Curved Menisci
,”
J. Fluid Mech.
,
791
, p.
065507
.
21.
Davis
,
A. M. J.
, and
Lauga
,
E.
,
2009
, “
Geometric Transition in Friction for Flow Over a Bubble Mattress
,”
Phys. Fluids
,
21
(
1
), p.
011701
.
22.
Crowdy
,
D.
,
2016
, “
Effective Slip Lengths for Longitudinal Shear Flow Over Partial-Slip Circular Bubble Mattresses
,”
Fluid Dyn. Res.
,
47
(
6
), p.
065507
.
23.
Teo
,
C. J.
, and
Khoo
,
B. C.
,
2010
, “
Flow Past Superhydrophobic Surfaces Containing Longitudinal Grooves: Effects of Interface Curvature
,”
Microfluid. Nanofluid.
,
9
(
2–3
), pp.
499
511
.
24.
Teo
,
C. J.
, and
Khoo
,
B. C.
,
2014
, “
Effects of Interface Curvature on Poiseuille Flow Through Microchannels and Microtubes Containing Superhydrophobic Surfaces With Transverse Grooves and Ribs
,”
Microfluid. Nanofluid.
,
17
(
5
), pp.
891
905
.
25.
Ou
,
J.
, and
Rothstein
,
J.
,
2005
, “
Direct Velocity Measurements of the Flow Past Drag-Reducing Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
17
(
10
), p.
103606
.
26.
Woolford
,
B.
,
Prince
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2009
, “
Particle Image Velocimetry Characterization of Turbulent Channel Flow With Rib Patterned Superhydrophobic Walls
,”
Phys. Fluids
,
21
(
8
), p.
085106
.
27.
Schäffel
,
D.
,
Koynov
,
K.
,
Vollmer
,
D.
,
Butt
,
H.-J.
, and
Schönecker
,
C.
,
2016
, “
Local Flow Field and Slip Length of Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
116
(
13
), p.
134501
.
28.
Hodes
,
M.
,
Karamanis
,
G.
,
Steigerwalt Lam
,
L.
,
Maclachlan
,
S.
,
Kirk
,
T.
, and
Papageorgiou
,
D.
,
2015
, “
Conformal Map and Asymptotic Solutions for Apparent Slip Lengths in the Presence of Thermocapillary Stress
,”
23rd National Heat and Mass Transfer Conference and 1st International ISHMT-ASTFE Heat and Mass Transfer Conference
, Thiruvananthapuram, India, Dec. 17–20, Paper No. IHMTC2015-1254.
29.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1966
, “
Thermal Contact Resistance
,” Department of Mechanical Engineering, MIT, Cambridge, MA, Technical Report No. DSR-74542-41.
30.
MathWorks
,
2004
, “
Partial Differential Equation ToolboxTM User's Guide
,” MathWorks, Inc., Natick, MA.
31.
Yovanovich
,
M.
, and
Marotta
,
E.
,
2003
, “
Thermal Spreading and Contact Resistances
,”
Handbook of Heat Transfer
,
A.
Bejan
and
A. D.
Kraus
, eds.,
Wiley
,
Hoboken, NJ
, pp.
261
394
.
32.
ANSYS
,
2013
, “
ANSYS Fluent Theory Guide
,” ANSYS, Inc., Canonsburg, PA.
You do not currently have access to this content.