An effectiveness number of transfer units (ε–NTU) model is developed for use in evaporators where the evaporating stream: (1) comprises a volatile solvent and nonvolatile solute(s) and (2) undergoes a significant, but linear change in boiling point elevation (BPE) with increasing solute molality. The model is applicable to evaporators driven by an isothermal stream (e.g., steam-driven or refrigerant-driven) in parallel flow, counterflow, and crossflow configurations where the evaporating stream is mixed. The model is of use in a variety of process engineering applications as well as the sizing and rating of evaporators in high-salinity desalination systems.
Issue Section:
Heat Exchangers
References
1.
Standiford
, F. C.
, 2000
, “Evaporation
,” Kirk–Othmer Encyclopedia of Chemical Technology
, Wiley
, New York.
2.
Glover
, W. B.
, 2004
, “Selecting Evaporators for Process Applications
,” Chem. Eng. Prog.
, 100
(12
), pp. 26
–33
.3.
Nusselt
, W.
, 1916
, “Die Oberflächenkondensation des Wasserdampfes
,” Z. Ver. Dtsch. Ing.
, 60
(27), pp. 541
–546
.4.
Chen
, M. M.
, 1961
, “An Analytical Study of Laminar Film Condensation: Part 1—Flat Plates
,” ASME J. Heat Transfer
, 83
(1
), pp. 48
–54
.5.
Chun
, K. R.
, and Seban
, R. A.
, 1971
, “Heat Transfer to Evaporating Liquid Films
,” ASME J. Heat Transfer
, 93
(4
), pp. 391
–396
.6.
Brumfield
, L. K.
, and Theofanous
, T. G.
, 1976
, “On the Prediction of Heat Transfer Across Turbulent Liquid Films
,” ASME J. Heat Transfer
, 98
(3
), pp. 496
–502
.7.
Mudawwar
, I. A.
, and El-Masri
, M. A.
, 1986
, “Momentum and Heat Transfer Across Freely-Falling Turbulent Liquid Films
,” Int. J. Multiphase Flow
, 12
(5
), pp. 771
–790
.8.
Shmerler
, J. A.
, and Mudawwar
, I.
, 1988
, “Local Evaporative Heat Transfer Coefficient in Turbulent Free-Falling Liquid Films
,” Int. J. Heat Mass Transfer
, 31
(4
), pp. 731
–742
.9.
Marsh
, W. J.
, and Mudawar
, I.
, 1989
, “Predicting the Onset of Nucleate Boiling in Wavy Free-Falling Turbulent Liquid Films
,” Int. J. Heat Mass Transfer
, 32
(2
), pp. 361
–378
.10.
Parken
, W. H.
, Fletcher
, L. S.
, Sernas
, V.
, and Han
, J. C.
, 1990
, “Heat Transfer Through Falling Film Evaporation and Boiling on Horizontal Tubes
,” ASME J. Heat Transfer
, 112
(3
), pp. 744
–750
.11.
Ueda
, T.
, Inoue
, M.
, and Nagatome
, S.
, 1981
, “Critical Heat Flux and Droplet Entrainment Rate in Boiling of Falling Liquid Films
,” Int. J. Heat Mass Transfer
, 24
(7
), pp. 1257
–1266
.12.
Fletcher
, L. S.
, Sernas
, V.
, and Galowin
, L. S.
, 1974
, “Evaporation From Thin Water Films on Horizontal Tubes
,” Ind. Eng. Chem. Process Des. Dev.
, 13
(3
), pp. 265
–269
.13.
Yung
, D.
, Lorenz
, J. J.
, and Ganic
, E. N.
, 1980
, “Vapor/Liquid Interaction and Entrainment in Falling Film Evaporators
,” ASME J. Heat Transfer
, 102
(1
), pp. 20
–25
.14.
Chyu
, M. C.
, and Bergles
, A. E.
, 1987
, “An Analytical and Experimental Study of Falling-Film Evaporation on a Horizontal Tube
,” ASME J. Heat Transfer
, 109
(4
), pp. 983
–990
.15.
Kocamustafaogullari
, G.
, and Chen
, I. Y.
, 1988
, “Falling Film Heat Transfer Analysis on a Bank of Horizontal Tube Evaporator
,” AIChE J.
, 34
(9
), pp. 1539
–1549
.16.
Han
, J.-C.
, and Fletcher
, L. S.
, 1985
, “Falling Film Evaporation and Boiling in Circumferential and Axial Grooves on Horizontal Tubes
,” Ind. Eng. Chem. Process Des. Dev.
, 24
(3
), pp. 570
–575
.17.
Roques
, J. F.
, Dupont
, V.
, and Thome
, J. R.
, 2002
, “Falling Film Transitions on Plain and Enhanced Tubes
,” ASME J. Heat Transfer
, 124
(3
), pp. 491
–499
.18.
Li
, W.
, Wu
, X.-Y.
, Luo
, Z.
, and Webb
, R. L.
, 2011
, “Falling Water Film Evaporation on Newly-Designed Enhanced Tube Bundles
,” Int. J. Heat Mass Transfer
, 54
(13–14
), pp. 2990
–2997
.19.
Rose
, J. W.
, 1998
, “Condensation Heat Transfer Fundamentals
,” Chem. Eng. Res. Des.
, 76
(2
), pp. 143
–152
.20.
Thome
, J. R.
, 1999
, “Falling Film Evaporation: State-of-the-Art Review of Recent Work
,” J. Enhanced Heat Transfer
, 6
(2–4), pp. 263
–278
.21.
Ribatski
, G.
, and Jacobi
, A. M.
, 2005
, “Falling-Film Evaporation on Horizontal Tubes—A Critical Review
,” Int. J. Refrig.
, 28
(5
), pp. 635
–653
.22.
Mistry
, K.
, Antar
, M. A.
, and Lienhard
, V. J. H.
, 2013
, “An Improved Model for Multiple Effect Distillation
,” Desalin. Water Treat.
, 51
(4–6
), pp. 807
–821
.23.
Thiel
, G. P.
, Tow
, E. W.
, Banchik
, L. D.
, Chung
, H.
, and Lienhard
, J. H.
, V, 2015
, “Energy Consumption in Desalinating Produced Water From Shale Oil and Gas Extraction
,” Desalination
, 366
, pp. 94
–112
.24.
Kays
, W. M.
, and London
, A. L.
, 1998
, Compact Heat Exchangers
, 3rd ed., Krieger
, Malabar, FL
.25.
Mills
, A. F.
, 1998
, Heat Transfer
, 2nd ed., Prentice-Hall
, Englewood Cliffs, NJ.
26.
Lienhard
, J. H.
, IV, and Lienhard
, J. H.
, V, 2011
, A Heat Transfer Textbook
, 4th ed., Phlogiston Press
, Cambridge, MA
.27.
Chun
, K. R.
, and Seban
, R. A.
, 1972
, “Performance Prediction of Falling-Film Evaporators
,” ASME J. Heat Transfer
, 94
(4
), pp. 432
–436
.28.
Fletcher
, L. S.
, Sernas
, V.
, and Parken
, W. H.
, 1975
, “Evaporation Heat Transfer Coefficients for Thin Sea Water Films on Horizontal Tubes
,” Ind. Eng. Chem. Process Des. Dev.
, 14
(4
), pp. 411
–416
.29.
Glasstone
, S.
, 1947
, Thermodynamics for Chemists
, D. Van Nostrand, New York
.30.
Saxton
, B.
, Austin
, J. B.
, Dietrich
, H. G.
, Fenwick
, F.
, Fleischer
, A.
, Frear
, G. L.
, Roberts
, E. J.
, Smith
, R. P.
, Solomon
, M.
, and Spurlin
, H. M.
, 1928
, “Boiling-Point Elevations, Non-Volatile Solutes
,” International Critical Tables of Numerical Data, Physics, Chemistry and Technology
, Vol. III
, E. W.
Washburn
, ed., McGraw-Hill
, New York
, pp. 324
–350
.31.
Scatchard
, G.
, Hamer
, W. J.
, and Wood
, S. E.
, 1938
, “Isotonic Solutions—I: The Chemical Potential of Water in Aqueous Solutions of Sodium Chloride, Potassium Chloride, Sulfuric Acid, Sucrose, Urea and Glycerol at 25 deg
,” Isotonic Solutions
, 60
(12
), pp. 3061
–3070
.32.
Brown
, E. H.
, and Whitt
, C. D.
, 1952
, “Vapor Pressure of Phosphoric Acids
,” Ind. Eng. Chem.
, 44
(3
), pp. 615
–618
.33.
Messikomer
, E. E.
, and Wood
, R. H.
, 1975
, “The Enthalpy of Dilution of Aqueous Sodium Chloride at 298.15 to 373.15 K, Measured With a Flow Calorimeter
,” J. Chem. Thermodyn.
, 7
(2
), pp. 119
–130
.Copyright © 2016 by ASME
You do not currently have access to this content.