In the current paper, the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient is revisited. In this problem, it has been assumed that the heat transfer coefficient is expressed in a power-law form and the thermal conductivity is a linear function of temperature. It is shown that its governing nonlinear differential equation is exactly solvable. A full discussion and exact analytical solution in the implicit form are given for further physical interpretation and it is proved that three possible cases may occur: there is no solution to the problem, the solution is unique, and the solutions are dual depending on the values of the parameters of the model. Furthermore, we give exact analytical expressions of fin efficiency as a function of thermogeometric fin parameter.

References

1.
Kim
,
S.
, and
Huang
,
C. H.
,
2007
, “
A Series Solution of the Non-Linear Fin Problem With Temperature-Dependent Thermal Conductivity and Heat Transfer Coefficient
,”
J. Phys. D: Appl. Phys.
,
40
(
9
), pp.
2979
2987
.
2.
Khani
,
F.
,
Raji
,
M. A.
, and
Nejad
,
H. H.
,
2009
, “
Analytical Solutions and Efficiency of the Nonlinear Fin Problem With Temperature-Dependent Thermal Conductivity and Heat Transfer Coefficient
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
8
), pp.
3327
3338
.
3.
Liaw
,
S.
, and
Yeh
,
R.
,
1994
, “
Fins With Temperature Dependent Surface Heat Flux-I. Single Heat Transfer Mode
,”
Int. J. Heat Mass Transfer
,
37
(
10
), pp.
1509
1515
.
4.
Liaw
,
S.
, and
Yeh
,
R.
,
1994
, “
Fins With Temperature Dependent Surface Heat Flux-II. Multi-Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
37
(
10
), pp.
1517
1524
.
5.
Moitsheki
,
R.
,
Hayat
,
T.
, and
Malik
,
M.
,
2010
, “
Some Exact Solutions of the Fin Problem With a Power Law Temperature-Dependent Thermal Conductivity
,”
Nonlinear Anal.: Real World Appl.
,
11
(
5
), pp.
3287
3294
.
6.
Ndlovu
,
P. L.
, and
Moitsheki
,
R. J.
,
2013
, “
Analytical Solutions for Steady Heat Transfer in Longitudinal Fins With Temperature-Dependent Properties
,”
Math. Probl. Eng.
,
2013
, article ID no 273052.
7.
Ganji
,
D.
,
2006
, “
The Application of He's Homotopy Perturbation Method to Nonlinear Equations Arising in Heat Transfer
,”
Phys. Lett. A
,
335
(
4–5
), pp.
337
341
.
8.
Tari
,
H.
,
Ganji
,
D.
, and
Babazadeh
,
H.
,
2007
, “
The Application of He's Variational Iteration Method to Nonlinear Equations Arising in Heat Transfer
,”
Phys. Lett. A
,
363
(
3
), pp.
213
217
.
9.
Chowdhury
,
M.
, and
Hashim
,
I.
,
2008
, “
Analytical Solutions to Heat Transfer Equations by Homotopy-Perturbation Method Revisited
,”
Phys. Lett. A
,
372
(
8
), pp.
1240
1243
.
10.
Chang
,
M. H.
,
2005
, “
A Decomposition Solution for Fins With Temperature Dependent Surface Heat Flux
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1819
1824
.
11.
Abbasbandy
,
S.
,
2006
, “
The Application of Homotopy Analysis Method to Nonlinear Equations Arising in Heat Transfer
,”
Phys. Lett. A
,
360
(
1
), pp.
109
113
.
12.
Liao
,
S.
,
2003
,
Beyond Perturbation: Introduction to the Homotopy Analysis Method
,
Chapman and Hall
,
London
.
13.
Liao
,
S.
,
2012
,
Homotopy Analysis Method in Nonlinear Differential Equations
,
Springer-Verlag
,
Beijing, China
.
14.
Abbasbandy
,
S.
, and
Shivanian
,
E.
,
2011
, “
Predictor Homotopy Analysis Method and Its Application to Some Nonlinear Problems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
6
), pp.
2456
2468
.
15.
Abbasbandy
,
S.
, and
Shivanian
,
E.
,
2010
, “
Prediction of Multiplicity of Solutions of Nonlinear Boundary Value Problems: Novel Application of Homotopy Analysis Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
12
), pp.
3830
3846
.
16.
Abbasbandy
,
S.
,
Magyari
,
E.
, and
Shivanian
,
E.
,
2009
, “
The Homotopy Analysis Method for Multiple Solutions of Nonlinear Boundary Value Problems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(9–10), pp.
3530
3536
.
17.
Vosoughi
,
H.
,
Shivanian
,
E.
, and
Abbasbandy
,
S.
,
2012
, “
Unique and Multiple PHAM Series Solutions of a Class of Nonlinear Reactive Transport Model
,”
Numer. Algorithms
,
61
(
3
), pp.
515
524
.
18.
Shivanian
,
E.
,
Alsulami
,
H. H.
,
Alhuthali
,
M. S.
, and
Abbasbandy
,
S.
,
2014
, “
Predictor Homotopy Analysis Method (PHAM) for Nano Boundary Layer Flows With Nonlinear Navier Boundary Condition: Existence of Four Solutions
,”
Filomat
,
28
(
8
), pp.
1687
1697
.
19.
Liu
,
Y. P.
,
Yao
,
R. X.
, and
Li
,
Z. B.
,
2009
, “
An Application of a Homotopy Analysis Method to Nonlinear Composites
,”
J. Phys. A: Math. Theor.
,
42
(
12
), p.
125205
.
20.
Yabushita
,
K.
,
Yamashita
,
M.
, and
Tsuboi
,
K.
,
2007
, “
An Analytic Solution of Projectile Motion With the Quadratic Resistance Law Using the Homotopy Analysis Method
,”
J. Phys. A: Math. Theor.
,
40
(
29
), p.
8403
.
21.
Mehmood
,
A.
, and
Ali
,
A.
,
2008
, “
Analytic Solution of Three-Dimensional Viscous Flow and Heat Transfer Over a Stretching Flat Surface by Homotopy Analysis Method
,”
ASME J. Heat Transfer
,
130
(
12
), p.
121701
.
22.
Javed
,
T.
,
Abbas
,
Z.
,
Hayat
,
T.
, and
Asghar
,
S.
,
2009
, “
Homotopy Analysis for Stagnation Slip Flow and Heat Transfer on a Moving Plate
,”
ASME J. Heat Transfer
,
131
(
9
), p.
094506
.
23.
Iqbal
,
S.
,
Ansari
,
A.
,
Siddiqui
,
A.
, and
Javed
,
A.
,
2011
, “
Use of Optimal Homotopy Asymptotic Method and Galerkins Finite Element Formulation in the Study of Heat Transfer Flow of a Third Grade Fluid Between Parallel Plates
,”
ASME J. Heat Transfer
,
133
(
9
), p.
091702
.
24.
Abbasbandy
,
S.
, and
Shivanian
,
E.
,
2010
, “
Exact Analytical Solution of a Nonlinear Equation Arising in Heat Transfer
,”
Phys. Lett. A
,
374
(
4
), pp.
567
574
.
25.
Abbasbandy
,
S.
,
Shivanian
,
E.
, and
Hashim
,
I.
,
2011
, “
Exact Analytical Solution of Forced Convection in a Porous-Saturated Duct
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
10
), pp.
3981
3989
.
26.
Abbasbandy
,
S.
, and
Shivanian
,
E.
,
2012
, “
Exact Analytical Solution of the MHD Jeffery-Hamel Flow Problem
,”
Meccanica
,
47
(
6
), pp.
1379
1389
.
27.
Magyari
,
E.
,
2008
, “
Exact Analytical Solution of a Nonlinear Reaction-Diffusion Model in Porous Catalysts
,”
Chem. Eng. J.
,
143
(1–3), pp.
167
171
.
28.
Magyari
,
E.
,
2010
, “
Exact Analytical Solutions of Diffusion Reaction in Spherical Porous Catalyst
,”
Chem. Eng. J.
,
158
(
2
), pp.
266
270
.
29.
Shivanian
,
E.
,
2013
, “
Existence Results for Nano Boundary Layer Flows With Nonlinear Navier Boundary Condition
,”
Phys. Lett. A
,
377
(
41
), pp.
2950
2954
.
30.
Shivanian
,
E.
,
Abbasbandy
,
S.
, and
Alhuthali
,
M. S.
,
2014
, “
Exact Analytical Solution to the Poisson-Boltzmann Equation for Semiconductor Devices
,”
The European Physical Journal Plus
,
129
(
104
).
You do not currently have access to this content.