The discrete ordinates method is a popular and versatile technique for solving the radiative transport equation, a major drawback of which is the presence of ray effects. Mitigation of ray effects can yield significantly more accurate results and enhanced numerical stability for combined mode codes. When ray effects are present, the solution is seen to be highly dependent upon the relative orientation of the geometry and the global reference frame. This is an undesirable property. A novel ray effect mitigation technique of averaging the computed solution for various reference frame orientations is proposed.

References

References
1.
Modest
,
M. F.
,
1993
,
Radiative Heat Transfer
,
McGraw-Hill
,
New York
.
2.
Siegel
,
R.
, and
Howell
,
J. R.
,
2002
,
Thermal Radiation Heat Transfer
,
Taylor & Francis
,
New York
.
3.
Coelho
,
P. J.
,
2014
, “
Advances in the Discrete Ordinates and Finite Volume Methods for the Solution of Radiative Heat Transfer Problems in Participating Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
145
, pp.
121
146
.
4.
Fiveland
,
W. A.
,
1988
, “
Three-Dimensional Radiative Heat Transfer Solutions by the Discrete-Ordinates Method
,”
J. Thermophys.
,
2
(
4
), pp.
309
316
.
5.
Fiveland
,
W. A.
,
1984
, “
Discrete-Ordinates Solutions of the Radiative Transport Equation for Rectangular Enclosures
,”
ASME J. Heat Transfer
,
106
(
4
), pp.
699
706
.
6.
Fiveland
,
W. A.
,
1987
, “
Discrete Ordinate Methods for Radiative Heat Transfer in Isotropically and Anisotropically Scattering Media
,”
ASME J. Heat Transfer
,
109
(
3
), pp.
809
812
.
7.
Morel
,
J. E.
,
Wareing
,
T. A.
,
Lowrie
,
R. B.
, and
Parsons
,
D. K.
,
2003
, “
Analysis of Ray-Effect Mitigation Techniques
,”
Nucl. Sci. Eng.
,
109
(
3
), pp.
1
22
.
8.
Coelho
,
P. J.
,
2002
, “
The Role of Ray Effects and False Scattering on the Accuracy of the Standard and Modified Discrete Ordinates Methods
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
, pp.
231
238
.
9.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1993
, “
Ray Effect and False Scattering in the Discrete Ordinates Method
,”
Numer. Heat Transfer, Part B
,
24
(
4
), pp.
373
389
.
10.
Stone
,
J. C.
,
2007
, “
Adaptive Discrete-Ordinates Algorithms and Strategies
,” Doctoral dissertation, Texas A&M University, College Station, TX.
11.
Brown
,
P. N.
, and
Chang
,
B.
,
2006
, “
Locally Refined Quadrature Rules for SN Transport
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-JRNL-220755.
12.
Longoni
,
G.
, and
Haghighhat
,
A.
,
2002
, “
Development and Application of the Regional Angular Refinement Technique and Its Applications to Non-Conventional Problems
,” Proceedings of PHYSOR, Seoul, Korea, Oct. 7–10.
13.
McClarren
,
R. G.
, and
Ayzman
,
Y.
,
2013
, “
Improved Discrete Ordinates Solutions Using Angular Filtering
,”
23rd International Conference on Transport Theory
, Santa Fe, NM, Sept. 15–20.
14.
Lewis
,
E. E.
, and
Miller
,
W. F.
, Jr.
,
1993
,
Computational Methods of Neutron Transport
,
American Nuclear Society
,
La Grange Park, IL
.
15.
Gast
,
R. C.
,
1961
, “
The Two-Dimensional Quadruple P0 and P1 Approximations
,” Bettis Atomic Power laboratory, West Mifflin, PA, Report No. WARD-TM-274.
16.
Natelson
,
M.
,
1971
, “
Variational Derivation of Discrete Ordinate-Like Approximations
,”
Nucl. Sci. Eng.
,
43
, pp.
131
144
.
17.
Stepanek
,
J.
,
1981
, “
The DPN and QPN Surface Flux Integral Transport Method in One-Dimensional and X-Y Geometry
,”
ANS/ENS International Topical Meeting on Advances in Mathematical Methods for the Solution of Nuclear Engineering Problems
, Munich, Germany, April.
18.
Ramankutty
,
M. A.
, and
Crosbie
,
A. L.
,
1998
, “
Modified Discrete-Ordinates Solution of Radiative Transfer in Three-Dimensional Rectangular Enclosures
,”
J. Quant. Spectrosc. Radiat. Transfer
,
60
(
1
), pp.
103
134
.
19.
Koch
,
R.
, and
Becker
,
R.
,
2004
, “
Evaluation of Quadrature Schemes for the Discrete Ordinates Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
84
(
4
), pp.
423
435
.
20.
Koch
,
R.
,
Krebs
,
W.
,
Wittig
,
S.
, and
Viskanta
,
R.
,
1995
, “
Discrete Ordinates Quadrature Schemes for Multidimensional Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
53
(
4
), pp.
353
372
.
21.
Rukolaine
,
S. A.
, and
Yuferev
,
V. S.
,
2001
, “
Discrete Ordinates Quadrature Schemes Based on the Angular Interpolation of Radiation Intensity
,”
J. Quant. Spectrosc. Radiat. Transfer
,
69
(
3
), pp.
257
275
.
22.
Fiveland
,
W. A.
, and
Jessee
,
J. P.
,
1996
, “
Acceleration Schemes for the Discrete Ordinates Method
,”
J. Thermophys. Heat Transfer
,
10
(
3
), pp.
445
451
.
23.
Raithby
,
G. D.
, and
Chui
,
E. H.
,
2004
, “
Accelerated Solution of the Radiation-Transfer Equation With Strong Scattering
,”
J. Thermophys. Heat Transfer
,
18
(
4
), pp.
156
159
.
24.
Koo
,
H. M.
,
Cha
,
H.
, and
Song
,
T. H.
,
2001
, “
Convergence Characteristics of Temperature in Radiation Problems
,”
Numer. Heat Transfer, Part B
,
40
(
4
), pp.
303
324
.
25.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
,
1998
, “
Finite Volume Method for Radiative Heat Transfer Using Unstructured Meshes
,”
J. Thermophys. Heat Transfer
,
12
(
3
), pp.
313
321
.
26.
Kang
,
S. H.
, and
Song
,
T. H.
,
2008
, “
Finite Element Formulation of the First- and Second-Order Discrete Ordinates Equations for Radiative Heat Transfer Calculation in Three-Dimensional Participating Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
11
), pp.
2094
2107
.
27.
Asllanaj
,
F.
,
Feldheim
,
V.
, and
Lybaert
,
P.
,
2007
, “
Solution of Radiative Heat Transfer in 2-D Geometries by a Modified Finite-Volume Method Based on a Cell Vertex Scheme Using Unstructured Triangular Meshes
,”
Numer. Heat Transfer, Part B
,
51
(
2
), pp.
97
119
.
28.
Tezduyar
,
T. E.
, and
Osawa
,
Y.
,
2000
, “
Finite Element Stabilization Parameters Computed From Element Matrices and Vectors
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
411
430
.
29.
Brooks
,
A. N.
, and
Hughs
,
T. J. R.
,
1982
, “
Streamline Upwind/Petrov–Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations
,”
Comp. Methods Appl. Mech. Eng.
,
32
, pp.
199
259
.
30.
Heinrich
,
J. C.
,
Huyakorn
,
P. S.
,
Zienkiewicz
,
O. C.
, and
Mitchell
,
A. R.
,
1977
, “
An ‘Upwind’ Finite Element Scheme for Two-Dimensional Convective Transport Equation
,”
Int. J. Numer. Methods Eng.
,
11
(
1
), pp.
131
143
.
31.
Crosbie
,
A. L.
, and
Schrenker
,
R. G.
,
1984
, “
Radiative Transfer in a Two-Dimensional Rectangular Medium Exposed to Diffuse Radiation
,”
J. Quant. Spectrosc. Radiat. Transfer
,
32
(
4
), pp.
339
372
.
32.
Altac
,
Z.
, and
Tekkalmaz
,
M.
,
2004
, “
Solution of the Radiative Integral Transfer Equations in Rectangular Participating and Isotropically Scattering Inhomogeneous Medium
,”
Int. J. Heat Mass Transfer
,
47
(
1
), pp.
101
109
.
33.
Longoni
,
G.
,
2004
, “
Advanced Quadrature Sets, Acceleration and Preconditioning Techniques for the Discrete Ordinates Method in Parallel Computing Environments
,” Ph.D. dissertation, University of Florida, Gainesville, FL.
34.
Carlson
,
B. G.
, and
Lathrop
,
K. D.
,
1968
, “
Transport Theory—The Method of Discrete Ordinates
,”
Computing Methods in Reactor Physics
,
Wiley
,
New York
.
35.
Carlson
,
B. G.
,
1971
, “
On a More Precise Definition of Discrete Ordinates Methods
,”
Second Conference Transport Theory
, Los Alamos, NM, pp. 348–390.
36.
Carlson
,
B. G.
,
1970
, “
Transport Theory: Discrete Ordinates Quadrature Over the Unit Sphere
,” Los Alamos Scientific Laboratory, Los Alamos, NM.
37.
Carlson
,
B. G.
, and
Lee
,
C. E.
,
1961
, “
Mechanical Quadrature and the Transport Equation
,” Los Alamos Scientific Laboratory, Los Alamos, NM.
38.
Lathrop
,
K. D.
, and
Carlson
,
B. G.
,
1965
Discrete Ordinates Angular Quadrature of the Neutron Transport Equation
,” Los Alamos Scientific Laboratory, Los Alamos, NM.
39.
Lee
,
C. E.
,
1962
Discrete SN Approximation to Transport Theory
,” Los Alamos Scientific Laboratory, Los Alamos, NM.
40.
Shoemake
,
K.
,
1992
, “
Uniform Random Rotations
,”
Graphics Gems III
,
Academic Press
,
London
, pp.
124
132
.
41.
Brannon
,
R. M.
,
2002
, “
Rotation: A Review of Useful Theorems Involving Proper Orthogonal Matrices Reference to Three-Dimensional Physical Space
,” Sandia National Laboratories, Albuquerque, NM.
42.
Howell
,
L. H.
,
2002
, “
A Discrete Ordinates Algorithm for Radiation Transport Using Block-Structured Adaptive Mesh Refinement
,”
Nuclear Explosives Code Development Conference
, Monterey, CA, Oct. 21–24.
43.
Howell
,
L. H.
,
2004
, “
A Parallel AMR Implementation of the Discrete Ordinates Method for Radiation Transport
,”
Adaptive Mesh Refinement—Theory and Applications
,
Springer
,
Berlin
, pp.
255
270
.
44.
Pautz
,
S.
,
Pandya
,
T.
, and
Adams
,
M.
,
2009
, “
Scalable Parallel Prefix Solvers for Discrete Ordinates Transport
,”
International Conference on Mathematics, Computational Methods and Reactor Physics
(M&C 2009), Saratoga Springs, New York, May 3–7.
45.
Moustafa
,
S.
,
Dutka-Malen
,
I.
,
Plagne
,
L.
,
Poncot
,
A.
, and
Ramet
,
P.
,
2013
, “
Shared Memory Parallelism for 3D Cartesian Discrete Ordinates Solver
,”
Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo
, Paris, France, Oct. 27–31.
46.
Bailey
,
T. S.
, and
Falgout
,
R. D.
,
2009
, “
Analysis of Massively Parallel Discrete-Ordinates Transport Sweep Algorithms With Collisions
,”
International Conference on Mathematics, Computational Methods, and Reactor Physics
, Saratoga Springs, New York, May 3–7.
You do not currently have access to this content.