Heat transfer and fluid flow through different microchannel geometries in the transitional regime (rarefied flow) are analyzed by means of direct simulation Monte Carlo (DSMC) simulations. Four types of three-dimensional microchannels, intended to be used as expansion slots in microresistojet concepts, are investigated using nitrogen as working fluid. The main purpose is to understand the impact of the channel geometry on the exit velocity and the transmission coefficient, parameters which are well known to affect directly the thruster performance. Although this analysis can be applied in principle to several possible microfluidics scenarios, particular focus is given to its application in the field of space propulsion for micro-, nano-, and picosatellites, for which the requirements ask for low thrust levels from some micronewtons to a few millinewtons and moderate specific impulse, as well as a low power consumption in the order of a few watts. Analysis shows that the thrust produced by one single microchannel can be increased by about 480% with a careful selection of the channel geometry, decreasing at the same time the specific impulse by just 5%, with a power consumption decrease of more than 66.7%.

References

References
1.
Sanders
,
B.
,
Van Vliet
,
L.
,
Nardini
,
F. T.
,
Gronland
,
T.
,
Rangsten
,
P.
,
Shea
,
H.
,
Noca
,
M.
,
Visee
,
R.
,
Monna
,
B.
,
Stark
,
J.
,
Bulit
,
A.
, and
Di Cara
,
D. M.
,
2010
, “
Development of MEMS Based Electric Propulsion
,”
3AF, ESA and CNES, Space Propulsion Conference
, San Sebastian, Spain, May 3–6.
2.
Jian Guo
,
J.
,
Bouwmeester
,
J.
, and
Gill
,
E.
,
2016
, “
In-Orbit Results of Delfi-n3Xt: Lessons Learned and Move Forward
,”
Acta Astronautica
,
121
, pp.
39
50
.
3.
Cervone
,
A.
,
Zandbergen
,
B.
,
Guo
,
J.
,
Gill
,
E.
,
Wieling
,
W.
,
Nardini
,
F. T.
, and
Schuurbiers
,
C.
,
2012
, “
Application of an Advanced Micro-Propulsion System to the DELFFI Formation-Flying Demonstration Within the QB50 Mission
,”
63rd International Astronautical Congress, International Astronautical Federation
, Naples, Italy.
4.
Gill
,
E.
,
Sundaramoorthy
,
P.
,
Bouwmeester
,
J.
,
Zandbergen
,
B.
, and
Reinhard
,
R.
,
2013
, “
Formation Flying Within a Constellation of Nano-Satellites: The qb50 Mission
,”
Acta Astronaut.
,
82
(
1
), pp.
110
117
.
5.
Gohardani
,
A. S.
,
Stanojev
,
J.
,
Demairé
,
A.
,
Anflo
,
K.
,
Persson
,
M.
,
Wingborg
,
N.
, and
Christer Nilsson
,
C.
,
2014
, “
Green Space Propulsion: Opportunities and Prospects
,”
Prog. in Aerosp. Sci.
,
71
, pp.
128
149
.
6.
Ketsdever
,
A.
,
Wadsworth
,
D.
,
Vargo
,
S.
, and
Muntz
,
E.
,
1998
, “
A Free Molecule Micro-Resistojet: An Interesting Alternative to Nozzle Expansion
,” AIAA Paper No. 98-3918.
7.
Cervone
,
A.
,
Mancas
,
A.
, and
Zandbergen
,
B.
,
2015
, “
Conceptual Design of a Low-Pressure Micro-Resistojet Based on a Sublimating Solid Propellant
,”
Acta Astronaut.
,
108
, pp.
30
39
.
8.
Guerrieri
,
D. C.
,
de Athayde Costa e Silva
,
M.
,
Zandbergen
,
B. T. C.
, and
Cervone
,
A.
,
2015
, “
Development of a Low Pressure Free Molecular Micro-Resistojet for CubeSat Applications
,”
66th International Astronautical Congress, International Astronautical Federation
, Jerusalem, Israel.
9.
Ketsdever
,
A.
,
Lee
,
R.
, and
Lilly
,
T.
,
2005
, “
Performance Testing of a Microfabricated Propulsion System for Nanosatellite Applications
,”
J. Micromech. Microeng.
,
15
(
12
), pp.
2254
2263
.
10.
Ahmed
,
Z.
,
Gimelshein
,
S. F.
, and
Ketsdever
,
A.
,
2006
, “
Numerical Analysis of Free Molecule Micro-Resistojet Performance
,”
Journal of Propulsion and Power
,
22
(
4
), pp.
749
756
.
11.
Lafferty
,
J. M.
,
1998
,
Foundations of Vacuum Science and Technology
,
Wiley
,
Hoboken, NJ
.
12.
Muntz
,
E. P.
,
1989
, “
Rarefied Gas Dynamics
,”
Annu. Rev. Fluid Mech.
,
21
(
1
), pp.
387
422
.
13.
Tuckerman
,
B. D.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
14.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2005
,
Microflows and Nanoflows Fundamentals and Simulation
, Vol.
29
,
Springer-Verlag
,
Heidelberg, Germany
.
15.
Bird
,
G. A.
,
1994
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flow
(Oxford Engineering Science Series), Vol.
42
,
Clarendon Press
,
Oxford, UK
.
16.
Wagner
,
W.
,
1992
, “
A Convergence Proof for Bird's Direct Simulation Monte Carlo Method for the Boltzmann Equation
,”
J. Stat. Phys.
,
66
(
3
), pp.
1011
1044
.
17.
Akhlaghi
,
H.
,
Balaj
,
M.
, and
Roohi
,
E.
,
2013
, “
Direct Simulation Monte Carlo Investigation of Mixed Supersonic-Subsonic Flow Through Micro-/Nano-Scale Channels
,”
Phys. Scr.
,
88
(
1
), p.
015401
.
18.
Mavriplis
,
C.
,
Ahn
,
J. C.
, and
Goulard
,
R.
,
1997
, “
Heat Transfer and Flowfields in Short Microchannels Using Direct Simulation Monte Carlo
,”
J. Thermophys. Heat Transfer
,
11
(
4
), pp.
489
496
.
19.
Balaj
,
M.
,
Roohi
,
E.
,
Akhlaghi
,
H.
, and
Myong
,
R. S.
,
2014
, “
Investigation of Convective Heat Transfer Through Constant Wall Heat Flux Micro/Nano Channel Using DSMC
,”
Int. J. Heat Mass Transfer
,
71
, pp.
633
638
.
20.
Varoutis
,
S.
,
Valougeorgis
,
D.
,
Sazhin
,
O.
, and
Sharipov
,
F.
,
2008
, “
Rarefied Gas Flow Through Short Tubes Into Vaccum
,”
J. Vac. Sci. Technol.
,
26
(
2
), p.
228
.
21.
Saadati
,
S. A.
, and
Roohi
,
E.
,
2015
, “
Detailed Investigation of Flow and Thermal Field in Micro/Nano Nozzles Using Simplified Bernoulli Trial (SBT) Collision Scheme in DSMC
,”
Aerosp. Sci. Technol.
,
46
, pp.
236
255
.
22.
Wang
,
M. R.
, and
Li
,
Z. X.
,
2004
, “
Numerical Simulations on Performance of MEMS-Based Nozzles at Moderate or Low Temperatures
,”
Microfluid. Nanofluid.
,
1
(
1
), pp.
62
70
.
23.
Horisawa
,
H.
,
Sawada
,
F.
,
Onodera
,
K.
, and
Funaki
,
I.
,
2008
, “
Numerical Simulation of Micro-Nozzle and Micro-Nozzle-Array Flowfield Characteristics
,”
Vacuum
,
83
(
1
), pp.
52
56
.
24.
Ivanov
,
M. S.
,
Markelov
,
G. N.
,
Ketsdever
,
A. D.
, and
Wadsworth
,
D. C.
,
1999
, “
Numerical Study of Cold Gas Micronozzle Flows
,”
AIAA
Paper No. 99-0166.
25.
Sazhin
,
O.
,
2008
, “
DSMC-Computation of the Rarefied Gas Flow Through a Slit Into a Vacuum
,”
AIP Conf. Proc.
,
1084
, p.
1147
.
26.
Oran
,
E. S.
,
Oh
,
C. K.
, and
Cybyk
,
B. Z.
,
1998
, “
Direct Simulation Monte Carlo: Recent Advances and Applications
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
403
441
.
27.
Scanlon
,
T. J.
,
Roohi
,
E.
,
White
,
C.
,
Darbandi
,
M.
, and
Reese
,
J. M.
,
2010
, “
An Open Source, Parallel DSMC Code for Rarefied Gas Flows in Arbitrary Geometries
,”
Comput. Fluids
,
39
(
10
), pp.
2078
2089
.
You do not currently have access to this content.