A better understanding of submicron-scale heat transfer is rapidly gaining interest due to the complex phenomena involved in nanometer scales. We discuss the role of interfacial resistance, in particular that of curvature effects, and the possibility of achieving high temperatures inside the particles without creating a phase transition in the surrounding fluid. The heat transfer from a heated nanoparticle into surrounding fluid is studied using molecular dynamics (MD) simulations. The results show that the particle size and wetting strength between the nanoparticle–liquid influence the heat transfer characteristics. The interfacial conductance and Kapitza length for a model solid–liquid interface were calculated. Both quantities are found to be strongly dependent on particle size and temperature. Smaller nanoparticles are observed to have a stronger bonding with the interfacial fluid when the temperature of the particle is higher, while larger nanoparticles have better affinity with the liquid at lower temperatures.

References

References
1.
Choi
,
S. U. S
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, edited by D. A. Siginer and H. P. Wang, presented at the ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, Nov.12–17, 231, pp. 99–105.
2.
Eastman
,
J.
,
Phillpot
,
S.
,
Choi
,
S.
, and
Keblinski
,
P.
,
2004
, “
Thermal Transport in Nanofluids 1
,”
Ann. Rev. Mater. Res.
,
34
(
1
), pp.
219
246
.
3.
Keblinski
,
P.
,
Prasher
,
R.
, and
Eapen
,
J.
,
2008
, “
Thermal Conductance of Nanofluids: Is the Controversy Over?
,”
J. Nanopart. Res.
,
10
(
7
), pp.
1089
1097
.
4.
Hu
,
M.
,
Petrova
,
H.
, and
Hartland
,
G. V.
,
2004
, “
Investigation of the Properties of Gold Nanoparticles in Aqueous Solution at Extremely High Lattice Temperatures
,”
Chem. Phys. Lett.
,
391
(
4–6
), pp.
220
225
.
5.
Sasikumar
,
K.
, and
Keblinski
,
P.
,
2014
, “
Molecular Dynamics Investigation of Nanoscale Cavitation Dynamics
,”
J. Chem. Phys.
,
141
(
23
), p.
234508
.
6.
Lombard
,
J.
,
Biben
,
T.
, and
Merabia
,
S.
,
2014
, “
Kinetics of Nanobubble Generation Around Overheated Nanoparticles
,”
Phys. Rev. Lett.
,
112
(
10
), p.
105701
.
7.
Merabia
,
S.
,
Shenogin
,
S.
,
Joly
,
L.
,
Keblinski
,
P.
, and
Barrat
,
J.-L.
,
2009
, “
Heat Transfer From Nanoparticles: A Corresponding State Analysis
,”
Proc. Natl. Acad. Sci.
,
106
(
36
), pp.
15113
15118
.
8.
Merabia
,
S.
,
Keblinski
,
P.
,
Joly
,
L.
,
Lewis
,
L. J.
, and
Barrat
,
J.-L.
,
2009
, “
Critical Heat Flux Around Strongly Heated Nanoparticles
,”
Phys. Rev. E
,
79
(
2
), p.
021404
.
9.
Shenogina
,
N.
,
Godawat
,
R.
,
Keblinski
,
P.
, and
Garde
,
S.
,
2009
, “
How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces
,”
Phys. Rev. Lett.
,
102
(
15
), p.
156101
.
10.
Acharya
,
H.
,
Mozdzierz
,
N. J.
,
Keblinski
,
P.
, and
Garde
,
S.
,
2012
, “
How Chemistry, Nanoscale Roughness and the Direction of Heat Flow Affect Thermal Conductance of Solid Water Interfaces
,”
Ind. Eng. Chem. Res.
,
51
(
4
), pp.
1767
1773
.
11.
Harikrishna
,
H.
,
Ducker
,
W. A.
, and
Huxtable
,
S. T.
,
2013
, “
The Influence of Interface Bonding on Thermal Transport Through Solid Liquid Interfaces
,”
Appl. Phys. Lett.
,
102
(
25
), p.
251606
.
12.
Tian
,
Z.
,
Marconnet
,
A.
, and
Chen
,
G.
,
2015
, “
Enhancing Solid-Liquid Interface Thermal Transport Using Self-Assembled Monolayers
,”
Appl. Phys. Lett.
,
106
(
21
), p.
211602
.
13.
Stillinger
,
F. H.
,
1973
, “
Structure in Aqueous Solutions of Nonpolar Solutes From the Standpoint of Scaled-Particle Theory
,”
J. Solution Chem.
,
2
(
2–3
), pp.
141
158
.
14.
Pollack
,
G. L.
,
1969
, “
Kapitza Resistance
,”
Rev. Mod. Phys.
,
41
(
1
),pp.
48
81
.
15.
van den Brink
,
A. M.
, and
Dekker
,
H.
,
1996
, “
Local Temperature Measurement and Kapitza Boundary Resistance
,”
Phys. B
,
219–220
, pp.
656
659
.
16.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
.
17.
Kazan
,
M.
,
2011
, “
Interpolation Between the Acoustic Mismatch Model and the Diffuse Mismatch Model for the Interface Thermal Conductance: Application to InN/GaN Superlattice
,”
ASME J. Heat Transfer
,
133
(
11
), p.
112401
.
18.
Merabia
,
S.
, and
Termentzidis
,
K.
,
2012
, “
Thermal Conductance at the Interface Between Crystals Using Equilibrium and Nonequilibrium Molecular Dynamics
,”
Phys. Rev. B
,
86
(
9
), p.
094303
.
19.
Caroli
,
C.
,
Combescot
,
R.
,
Nozieres
,
P.
, and
Saint-James
,
D.
,
1971
, “
Direct Calculation of the Tunneling Current
,”
J. Phys. C
,
4
(
8
), pp.
916
–929.
20.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.
21.
Chen
,
G.
,
1996
, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
539
545
.
22.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
23.
Shi
,
B.
, and
Dhir
,
V. K.
,
2009
, “
Molecular Dynamics Simulation of the Contact Angle of Liquids on Solid Surfaces
,”
J. Chem. Phys.
,
130
(
3
), p.
0347051
.
24.
Semiromi
,
D. T.
, and
Azimian
,
A. R.
,
2010
, “
Molecular Dynamics Simulation of Nonodroplets With the Modified Lennard-Jones Potential Function
,”
Heat Mass Transfer
,
47
(
5
), pp.
579
588
.
25.
Maruyama
,
S.
,
Kurashige
,
T.
,
Matsumoto
,
S.
,
Yamaguchi
,
Y.
, and
Kimura
,
T.
,
1998
, “
Liquid Droplet in Contact With a Solid Surface
,”
Microscale Thermophys. Eng.
,
2
(
1
), pp.
49
62
.
26.
Nair
,
A. R.
, and
Sathian
,
S. P.
,
2012
, “
A Molecular Dynamics Study to Determine the Solid-Liquid Interfacial Tension Using Test Area Simulation Method (TASM)
,”
J. Chem. Phys.
,
137
(
8
), p.
084702
.
27.
Barrat
,
J. L.
, and
Chiaruttini
,
F.
,
2003
, “
Kapitza Resistance at the Liquid-Solid Interface
,”
Mol. Phys.
,
101
(
11
), pp.
1605
–1610.
28.
Allen
,
M. P.
, and
Tildesley
,
S. J.
,
1991
,
Computer Simulation of Liquids
,
Reprint
ed.,
Oxford University Press
, New York.
29.
Gloor
,
G. J.
,
Jackson
,
G.
,
Blas
,
F. J.
, and
de Miguel
,
E.
,
2005
, “
Test-Area Simulation Method for the Direct Determination of the Interfacial Tension of Systems With Continuous or Discontinuous Potentials
,”
J. Chem. Phys.
,
123
(
13
), p.
134703
.
30.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2004
, “
AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution
,”
J. Phys. Chem. B
,
108
(
49
), pp.
18870
18875
.
31.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2006
, “
Thermal Conductance of Hydrophilic and Hydrophobic Interfaces
,”
Phys. Rev. Lett.
,
96
(
18
), p.
186101
.
32.
Issa
,
K. M.
, and
Mohamad
,
A. A.
,
2012
, “
Lowering Liquid-Solid Interfacial Thermal Resistance With Nanopatterned Surfaces
,”
Phys. Rev. E
,
85
(
8
), p.
031602
.
33.
Ong
,
W.-L.
,
Majumdar
,
S.
,
Malen
,
J. A.
, and
McGaughey
,
A. J. H.
,
2014
, “
Coupling of Organic and Inorganic Vibrational States and Their Thermal Transport in Nanocrystal Arrays
,”
J. Phys. Chem. C
,
118
(
14
), pp.
7288
7295
.
34.
Barisik
,
M.
, and
Beskok
,
A.
,
2014
, “
Temperature Dependence of Thermal Resistance at the Water/Silicon Interface
,”
Int. J. Therm. Sci.
,
77
, pp.
47
54
.
You do not currently have access to this content.