In this paper, horizontal solidification of gallium in a rectangular cavity was studied both experimentally and numerically. Two three-dimensional (3D) numerical models related to different numerical approaches were built. The first is a single-domain (SD) model based on the volume-of-fluid (VOF) method. This model also takes into account the presence of a mushy zone. The second model is a multidomain (MD) one; it includes two different meshes for the two phases and uses Stephan's boundary condition to determine the front velocity. The 3D models were tested under various thermal boundary conditions and compared with experimental results obtained in an appropriate experimental setup. The experimental setup included an ultrasonic Doppler velocimeter (UDV) for noninvasive measurements of the velocities in the liquid part of the metal, liquid–solid interface position and profile, its displacement, and longitudinal mean velocity. For determining the boundary influence, both 3D and 2D models were built. The comparison was carried out for the solidification front location and shape and the velocity and temperature fields. In general, the 3D numerical model gave more accurate results than the 2D model with respect to the experiments results. Although the MD model is more complicated to build and requires more computational efforts than the VOF model, the 3D MD model provides the most accurate results in comparison with current experiments.

References

References
1.
Hurle
,
D. T.
,
1994
,
Handbook of Crystal Growth
,
North-Holland Publishing Company
,
Amsterdam
.
2.
Gueijman
,
S. F.
,
Schvezov
,
C. E.
, and
Ares
,
A. E.
,
2010
, “
Vertical and Horizontal Directional Solidification of Zn-Al and Zn-Ag Diluted Alloys
,”
Mater. Trans.
,
51
(
10
), pp.
1861
1870
.
3.
Gau
,
C.
, and
Viskanta
,
R.
,
1984
, “
Melting and Solidification of a Metal System in Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
27
(
1
), pp.
113
123
.
4.
Gau
,
C.
, and
Viskanta
,
R.
,
1985
, “
Effect of Natural Convection on Solidification From Above and Melting From Below of a Pure Metal
,”
Int. J. Heat Mass Transfer
,
28
(
3
), pp.
573
587
.
5.
Gau
,
C.
, and
Viskanta
,
R.
,
1986
, “
Melting and Solidification of Pure Metal on a Vertical Wall
,”
Heat Transfer
,
108
(
1
), pp.
174
181
.
6.
Bertrand
,
O.
,
Binet
,
B.
,
Combeau
,
H.
,
Couturier
,
S.
,
Delannoy
,
Y.
,
Gobin
,
D.
,
Lacroix
,
M.
,
Le Quere
,
P.
,
Medale
,
M.
,
Mencinger
,
J.
,
Sadat
,
H.
, and
Vieira
,
G.
,
1999
, “
Melting Driven by Natural Convection—A Comparison Exercise: First Results
,”
Int. J. Therm. Sci.
,
38
(
1
), pp.
5
26
.
7.
Rady
,
M. A.
, and
Mohanty
,
A. K.
,
1996
, “
Natural Convective During Melting and Solidification of Pure Metals in a Cavity
,”
Numer. Heat Transfer, Part A
,
29
(
1
), pp.
49
63
.
8.
Bernard
,
C.
,
Gobin
,
D.
, and
Zanoly
,
A.
,
1986
, “
Moving Boundary Problem: Heat Conduction in the Solid Phase of a Phase Change Material During Melting Driven by Natural Convection in the Liquid
,”
Int. J. Heat Mass Transfer
,
29
(
11
), pp.
1669
1681
.
9.
Brent
,
D.
,
Voller
, V
. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convective Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer
,
13
(3), pp.
297
318
.
10.
Wolf
,
F.
, and
Viskanta
,
R.
,
1988
, “
Solidification of a Pure Metal at a Vertical Wall in the Presence of Liquid Superheat
,”
Int. J. Heat Mass Transfer
,
31
(
8
), pp.
1735
1744
.
11.
Voller
, V
. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modeling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.
12.
Szekely
,
J.
, and
Chhabra
,
P. S.
,
1970
, “
The Effect of Natural Convection on the Shape and Movement of the Melt-Solid Interface in the Controlled Solidification of Lead
,”
Metall. Trans.
,
1
(5), pp.
1195
1203
.
13.
Gueijman
,
S. F.
,
Schvezov
,
C. E.
, and
Ares
,
A. E.
,
2012
, “
Tracking Interphases in Directionally Solidified Zn-Al Binary Alloys
,”
Mater. Perform. Charact.
,
1
(
1
), pp.
1
16
.
14.
Assis
,
E.
,
Katsman
,
L.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2007
, “
Numerical and Experimental Study of Melting in a Spherical Shell
,”
Int. J. Heat Mass Transfer
,
50
(9–10), pp.
1790
1804
.
15.
Campbel
,
T. A.
, and
Koster
,
J. N.
,
1994
, “
Visualization of Liquid–Solid Interface Morphologies in Gallium Subject to Natural Convection
,”
Cryst. Growth
,
140
(3–4), pp.
414
425
.
16.
Ben-David
,
O.
,
Levy
,
A.
,
Mikhailovich
,
B.
, and
Azulay
,
A.
,
2013
, “
3D Numerical and Experimental Study of Gallium Melting in a Rectangular Container
,”
Int. J. Heat Mass Transfer
,
67
, pp.
260
271
.
17.
Brito
,
D.
,
Elbert
,
D.
, and
Olson
,
P.
,
2002
, “
Experimental Crystallization of Gallium: Ultrasonic Measurements of Elastic Anisotropy and Implications for the Inner Core
,”
Phys. Earth Planet. Inter.
,
129
(3–4), pp.
325
346
.
18.
Gartling
,
D. K.
,
1980
, “
Finite Element Analysis of Convective Heat Transfer Problems With Change of Phase
,”
Computer Methods in Fluids
, K. Morgan, C. Taylor, and C. A. Brebbia, eds., Pentech, London, pp.
257
284
.
19.
Morgan
,
K.
,
1981
, “
A Numerical Analysis of Freezing and Melting With Convection
,”
Comput. Methods Appl. Mech. Eng.
,
28
(
3
), pp.
275
284
.
20.
Tasaka
,
Y.
,
Takeda
,
Y.
, and
Yanagisawa
,
T.
,
2008
, “
Ultrasonic Visualization of Thermal Convective Motion in a Liquid Gallium Layer
,”
Flow Meas. Instrum.
,
19
(3–4), pp.
131
137
.
21.
Lide
,
D. R.
, ed.,
2003
,
CRC Handbook of Chemistry and Physics
,
84th ed.
,
CRC Press
,
Boca Raton, FL
.
22.
Hindmarsh
,
A. C.
,
Brown
,
P. N.
,
Grant
,
K. E.
,
Lee
,
S. L.
,
Serban
,
R.
,
Shumaker
,
D. E.
, and
Woodwar
,
C. S.
,
2005
, “
Sundials: Suite of Nonlinear and Differential/Algebraic Equation Solver
,”
ACM Trans. Math. Software
,
31
(
3
), pp.
363
396
.
23.
Schenk
,
O.
, and
Gartner
,
K.
,
2011
, “
PARDISO User Guide
.”
24.
Amestoy
,
P. R.
,
Duff
,
I. S.
,
L'Excellent
,
J. Y.
, and
Koster
,
J.
,
2000
, “
MUMPS: A General Purpose Distributed Memory Sparse Solver
,”
Applied Parallel Computing. New Paradigms for HPC in Industry and Academia
, Springer, Heidelberg, Germany, pp. 120–131.
25.
Zienkiewicz
,
O. C.
, CBE, FRS
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2005
,
The Finite Element Method Set
,
6th
ed.,
Elsevier
, Amsterdam, The Netherlands.
26.
Signal Processing SA
.”
27.
Brito
,
D.
,
Nataf
,
H. C.
,
Cardin
,
P.
,
Aubert
,
J.
, and
Masson
,
J. P.
,
2001
, “
Ultrasonic Doppler Velocimetry in Liquid Gallium
,”
Exp. Fluids
,
31
(
6
), pp.
653
663
.
28.
Franke
,
S.
,
Büttner
,
L.
,
Czarske
,
J.
,
Räbiger
,
D.
, and
Eckert
,
S.
,
2010
, “
Ultrasound Doppler System for Two-Dimensional Flow Mapping in Liquid Metals
,”
Flow Meas. Instrum.
,
21
(
3
), pp.
402
409
.
29.
Cramer
,
A.
,
Zhang
,
C.
, and
Eckert
,
S.
,
2004
, “
Local Flow Structures in Liquid Metals Measured by Ultrasonic Doppler Velocimetry
,”
Flow Meas. Instrum.
,
15
(
3
), pp.
145
153
.
You do not currently have access to this content.