The steady three-dimensional stagnation-point flow and heat transfer of a dusty fluid toward a stretching sheet is investigated by using similarity solution approach. The freestream along z-direction impinges on the stretching sheet to produce a flow with different velocity components. The governing equations are transformed into ordinary differential equations by introducing appropriate similarity variables and an exact solution is obtained. The nonlinear ordinary differential equations are solved numerically using Runge–Kutta fourth-order method. The effects of the physical parameters like velocity ratio, fluid and thermal particle interaction parameter, ratio of freestream velocity parameter to stretching sheet velocity parameter, Prandtl number, and Eckert number on the flow field and heat transfer characteristics are obtained, illustrated graphically, and discussed. Also, a comparison of the obtained numerical results is made with two-dimensional cases existing in the literature and good agreement is approved. Moreover, it is found that the heat transfer coefficient and shear stress on the surface for axisymmetric case are larger than nonaxisymmetric case. Also, for stationary flat plat case, a similarity solution is presented and a comparison of the obtained results is made with previously published results and full agreement is reported.

References

1.
Sakiadis
,
B. C.
,
1961
, “
Boundary Layer Behavior on Continuous Solid Surface
,”
AIChE J.
,
7
(
1
), pp.
26
28
.
2.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Sheet
,”
Z. Angew. Math. Phys.
,
21
(
4
), pp.
645
647
.
3.
Hiemenz
,
K.
,
1911
, “
Die grenzchicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten geraden KreisZylinder
,”
Dinglers Polytech. J.
,
326
, pp.
321
410
.
4.
Homman
,
F. Z.
,
1936
, “
Der Einfluss Grosser Zahighkeit bei der Strmung um den Zylinder und um die Kugel
,”
Z. Angew. Math. Mech.
,
16
(
3
), pp.
153
164
.
5.
Chiam
,
T. C.
,
1994
, “
Stagnation-Point Flow Towards a Stretching Plate
,”
J. Phys. Soc. Jpn.
,
63
(
6
), pp.
2443
2444
.
6.
Ishak
,
A.
,
Jafar
,
K.
,
Nazar
,
R.
, and
Pop
,
I.
,
2009
, “
MHD Stagnation Point Flow Towards a Stretching Sheet
,”
Phys. A
,
388
(
17
), pp.
3377
3383
.
7.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2008
, “
Hydromagnetic Flow and Heat Transfer Adjacent to a Stretching Vertical Sheet
,”
Heat Mass Transfer
,
44
(
8
), pp.
921
927
.
8.
Tzirtzilakis
,
E. E.
, and
Kafoussias
,
N. G.
,
2009
, “
Three-Dimensional Magnetic Fluid Boundary Layer Flow Over a Linearly Stretching Sheet
,”
ASME J. Heat Transfer
,
132
(
1
), p.
011702
.
9.
Abbassi
,
A. S.
, and
Rahimi
,
A. B.
,
2009
, “
Non-Axisymmetric Three-Dimensional Stagnation-Point Flow and Heat Transfer on a Flat Plate
,”
ASME J. Fluids Eng.
,
131
(
7
), p.
074501
.
10.
Abbassi
,
A. S.
, and
Rahimi
,
A. B.
,
2009
, “
Three-Dimensional Stagnation Flow and Heat Transfer on a Flat Plate With Transpiration
,”
J. Thermophys. Heat Transfer
,
23
(3), pp.
513
521
.
11.
Abbassi
,
A. S.
,
Rahimi
,
A. B.
, and
Niazman
,
H.
,
2011
, “
Exact Solution of Three-Dimensional Unsteady Stagnation Flow on a Heated Plate
,”
J. Thermophys. Heat Transfer
,
25
(
1
), pp.
55
58
.
12.
Abbassi
,
A. S.
, and
Rahimi
,
A. B.
,
2012
, “
Investigation of Two-Dimensional Unsteady Stagnation-Point Flow and Heat Transfer Impinging on an Accelerated Flat Plate
,”
ASME J. Heat Transfer
,
134
(
6
), p.
064501
.
13.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
243
247
.
14.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2011
, “
Double-Diffusive Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Therm. Sci.
,
50
(
5
), pp.
712
717
.
15.
Mustafa
,
M.
,
Hayat
,
T.
,
Pop
,
I.
,
Asghar
,
S.
, and
Obaidat
,
S.
,
2011
, “
Stagnation-Point Flow of a Nanofluid Towards a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
54
(25–26), pp.
5588
5594
.
16.
Makinde
,
O. D.
,
Khan
,
W. A.
, and
Khan
,
Z. H.
,
2013
, “
Buoyancy Effects on MHD Stagnation Point Flow and Heat Transfer of a Nanofluid Past a Convectively Heated Stretching/Shrinking Sheet
,”
Int. J. Heat Mass Transfer
,
62
, pp.
526
533
.
17.
Mahapatra
,
T. R.
,
Samir
,
K. N.
, and
Pop
,
I.
,
2014
, “
Dual Solutions in Stagnation-Point Flow and Heat Transfer Over a Shrinking Surface With Partial Slip
,”
ASME J. Heat Transfer
,
136
(
10
), p.
104501
.
18.
Sinha
,
A.
, and
Misra
,
J. C.
,
2014
, “
Effect of Induced Magnetic Field on Magneto-Hydrodynamic Stagnation Point Flow and Heat Transfer on a Stretching Sheet
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112701
.
19.
Saffman
,
P. G.
,
1962
, “
On the Stability of Laminar Flow of a Dusty Gas
,”
J. Fluid Mech.
,
13
(01), pp.
120
128
.
20.
Marble
,
F. E.
,
1970
, “
Dynamics of Dusty Gases
,”
Annu. Rev. Fluid Mech.
,
2
(
1
), pp.
397
446
.
21.
Chakrabarti
,
K. M.
,
1974
, “
Note on Boundary Layer in a Dusty Gas
,”
AIAA J.
,
12
(
8
), pp.
1136
1137
.
22.
Datta
,
N.
, and
Mishra
,
S. K.
,
1982
, “
Boundary Layer Flow of a Dusty Fluid Over a Semi-Infinite Flat Plate
,”
Acta Mech.
,
42
(1), pp.
71
83
.
23.
Vajravelu
,
K.
, and
Nayfeh
,
J.
,
1992
, “
Hydro-Magnetic Flow of a Dusty Fluid Over a Stretching Sheet
,”
Int. J. Non-Linear Mech.
,
27
(
6
), pp.
937
945
.
24.
Gireesha
,
B. J.
,
Roopa
,
G. S.
, and
Bagewadi
,
C. S.
,
2012
, “
Effect of Viscous Dissipation and Heat Source on Flow and Heat Transfer of Dusty Fluid Over Unsteady Stretching Sheet
,”
Appl. Math. Mech.
,
33
(
8
), pp.
1001
1014
.
25.
Gireesha
,
B. J.
,
Ramesh
,
G. K.
,
Abel
,
M. S.
, and
Bagewadi
,
C. S.
,
2011
, “
Boundary Layer Flow and Heat Transfer of a Dusty Fluid Flow Over a Stretching Sheet With Non-Uniform Heat Source/Sink
,”
Int. J. Multiphase Flow
,
37
(
8
), pp.
977
982
.
26.
Ramesh
,
G. K.
, and
Gireesha
,
B. J.
,
2013
, “
Flow Over a Stretching Sheet in a Dusty Fluid With Radiation Effect
,”
ASME J. Heat Transfer
,
135
(
10
), p.
102702
.
27.
Ramesh
,
G. K.
,
Gireesha
,
B. J.
, and
Bagewadi
,
C. S.
,
2012
, “
MHD Flow of a Dusty Fluid Near the Stagnation Point Over a Permeable Stretching Sheet With Non-Uniform Source/Sink
,”
Int. J. Heat Mass Transfer
,
55
(17–18), pp.
4900
4907
.
28.
Ramesh
,
G. K.
,
Gireesha
,
B. J.
, and
Bagewadi
,
C. S.
,
2014
, “
Stagnation Point Flow of a MHD Dusty Fluid Towards a Stretching Sheet With Radiation
,”
Afr. Mat.
,
25
(
1
), pp.
237
249
.
29.
Ismail
,
A. M.
, and
Ganesh
,
S.
,
2014
, “
Exact Solution to Unsteady MHD Dusty Fluid Flow Over a Moving Horizontal Plate Through a Porous Space
,”
Paripex—Indian J. Res.
,
3
(
2
), pp.
204
207
.
30.
Singh
,
P.
,
Jangid
,
A.
,
Tomer
,
N. S.
, and
Sinha
,
D.
,
2010
, “
Effects of Thermal Radiation and Magnetic Field on Unsteady Stretching Permeable Sheet in Presence of Free Stream Velocity
,”
Int. J. Inf. Math. Sci.
,
3
, pp.
160
166
.
You do not currently have access to this content.