In this paper, we report on the recent development of an advanced microscale heat sink, termed as piranha pin fin (PPF). A 200 μm deep microchannel embedded with PPFs was fabricated and tested. Fluid flow and heat transfer performance were evaluated with HFE7000 as the working fluid. The surface temperature, pressure drop, heat transfer coefficient, and critical heat flux (CHF) conditions were experimentally obtained and discussed. A 676 W/cm2 CHF was achieved based on the heater area and at an inlet mass flux of 2460 kg/m2 s. Microchannels with different PPF configurations were investigated and studied for different flow conditions. It was found that a microchannel with PPFs can dissipate high heat fluxes with reasonable pressure drops. Flow conditions and PPF configuration played important roles for both fluid flow and heat transfer performances. These studies extended knowledge and provided useful reference for further PPF design in microchannel for flow boiling.

References

References
1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
2.
Peng
,
X. F.
, and
Wang
,
B.
,
1993
, “
Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing Through Microchannels
,”
Int. J. Heat Mass Transfer
,
36
(
14
), pp.
3421
3427
.
3.
Peng
,
X. F.
,
Hu
,
H. Y.
, and
Wang
,
B. X.
,
1998
, “
Boiling Nucleation During Liquid Flow in Microchannels
,”
Int. J. Heat Mass Transfer
,
41
(
l
), pp.
101
106
.
4.
Peng
,
X. F.
,
Liu
,
D.
,
Lee
,
D. J.
,
Yan
,
Y.
, and
Wang
,
B. X.
,
2000
, “
Cluster Dynamics and Fictitious Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
23
), pp.
4259
4265
.
5.
Fedorov
,
A. G.
, and
Viskanta
,
R.
,
2000
, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
399
415
.
6.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2002
, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3477
3489
.
7.
Chandratilleke
,
T. T.
,
Jagannatha
,
D.
, and
Narayanaswamy
,
R.
,
2010
, “
Heat Transfer Enhancement in Microchannels With Cross-Flow Synthetic Jets
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
504
513
.
8.
Kleinstreuer
,
C.
, and
Koo
,
J.
,
2004
, “
Computational Analysis of Wall Roughness Effects for Liquid Flow in Micro-Conduits
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
1
9
.
9.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels—2012 Status and Research Needs
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091001
.
10.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.
11.
Goodling
,
J.
,
1997
, “
Microchannel Heat Exchanger—A Review
,”
Proc. SPIE
,
1997
, pp.
66
82
.
12.
Kandlikar
,
S. G.
,
2002
, “
Two-Phase Flow Patterns, Pressure Drop, and Heat Transfer During Boiling in Minichannel Flow Passages of Compact Evaporators
,”
Heat Transfer Eng.
,
23
(
1
), pp.
5
23
.
13.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(2–4), pp.
389
407
.
14.
Bergles
,
A. E.
,
Lienhard
,
J. H.
,
Kendall
,
G. E.
, and
Griffith
,
P.
,
2003
, “
Boiling and Evaporation in Small Diameter Channels
,”
Heat Transfer Eng.
,
24
(
1
), pp.
18
40
.
15.
Sobhan
,
C.
, and
Garimella
,
S.
,
2001
, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
4
), pp.
293
311
.
16.
Kiyofumi
,
M.
,
Akira
,
I.
, and
Hiroaki
,
O.
,
1992
, “
The Themohydraulic Characteristics of Two-Phase Flow in Extremely Narrow Channels
,”
Heat Transfer Jpn. Res.
,
21
(
8
), pp.
823
837
.
17.
KoŞar
,
A.
, and
Peles
,
Y.
,
2006
, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
,
128
(
2
), pp.
121
131
.
18.
KoŞar
,
A.
, and
Peles
,
Y.
,
2007
, “
Critical Heat Flux of R-123 in Silicon-Based Microchannels
,”
ASME J. Heat Transfer
,
129
(
7
), pp.
844
851
.
19.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling of Water in a Circular Staggered Micro-Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1349
1364
.
20.
Zhang
,
T.
,
Peles
,
Y.
,
Wen
,
J. T.
,
Tong
,
T.
,
Chang
,
J.-Y.
,
Prasher
,
R.
, and
Jensen
,
M. K.
,
2010
, “
Analysis and Active Control of Pressure-Drop Flow Instabilities in Boiling Microchannel Systems
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2347
2360
.
21.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
,
2000
, “
Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transf.
,
43
(
21
), pp.
3925
3936
.
22.
Bhide
,
R. R.
,
Singh
,
S. G.
,
Sridharan
,
A.
,
Duttagupta
,
S. P.
, and
Agrawal
,
A.
,
2009
, “
Pressure Drop and Heat Transfer Characteristics of Boiling Water in Sub-Hundred Micron Channel
,”
Exp. Therm. Fluid Sci.
,
33
(
6
), pp.
963
975
.
23.
Singh
,
S. G.
,
Bhide
,
R. R.
,
Duttagupta
,
S. P.
,
Puranik
,
B. P.
, and
Agrawal
,
A.
,
2009
, “
Two-Phase Flow Pressure Drop Characteristics in Trapezoidal Silicon Microchannels
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
4
), pp.
887
900
.
24.
Bhide
,
R. R.
,
Singh
,
S. G.
,
Duryodhan
,
V. S.
,
Sridharan
,
A.
, and
Agrawal
,
A.
,
2013
, “
Onset of Nucleate Boiling and Critical Heat Flux With Boiling Water in Microchannels
,”
Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom.
,
4
(
1
), pp.
25
47
.
25.
Agrawal
,
A.
, and
Singh
,
S. G.
,
2011
, “
A Review of State-of-the-Art on Flow Boiling of Water in Microchannel
,”
Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom.
,
2
(
1
), pp.
1
39
.
26.
Singh
,
S. G.
,
Jain
,
A.
,
Sridharan
,
A.
,
Duttagupta
,
S. P.
, and
Agrawal
,
A.
,
2009
, “
Flow Map and Measurement of Void Fraction and Heat Transfer Coefficient Using an Image Analysis Technique for Flow Boiling of Water in a Silicon Microchannel
,”
J. Micromech. Microeng.
,
19
(
7
), pp.
1
9
.
27.
Koşar
,
A.
, and
Peles
,
Y.
,
2007
, “
Boiling Heat Transfer in a Hydrofoil-Based Micro Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
1018
1034
.
28.
David
,
M. P.
,
Miler
,
J.
,
Steinbrenner
,
J. E.
,
Yang
,
Y.
,
Touzelbaev
,
M.
, and
Goodson
,
K. E.
,
2011
, “
Hydraulic and Thermal Characteristics of a Vapor Venting Two-Phase Microchannel Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5504
5516
.
29.
Woodcock
,
C.
,
Yu
,
X.
,
Plawsky
,
J.
, and
Peles
,
Y.
,
2015
, “
Piranha Pin Fin (PPF)—Advanced Flow Boiling Microstructures With Low Surface Tension Dielectric Fluids
,”
Int. J. Heat Mass Transfer
,
90
, pp.
591
604
.
30.
Wang
,
Y.
,
Houshmand
,
F.
,
Elcock
,
D.
, and
Peles
,
Y.
,
2013
, “
Convective Heat Transfer and Mixing Enhancement in a Microchannel With a Pillar
,”
Int. J. Heat Mass Transfer
,
62
, pp.
553
561
.
31.
Yang
,
F.
,
Dai
,
X.
,
Kuo
,
C.-J.
,
Peles
,
Y.
,
Khan
,
J.
, and
Li
,
C.
,
2013
, “
Enhanced Flow Boiling in Microchannels by Self-Sustained High Frequency Two-Phase Oscillations
,”
Int. J. Heat Mass Transf.
,
58
(
1–2
), pp.
402
412
.
32.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
33.
Yen
,
T.-H.
,
Kasagi
,
N.
, and
Suzuki
,
Y.
,
2003
, “
Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes
,”
Int. J. Multiphase Flow
,
29
(
12
), pp.
1771
1792
.
34.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase-Change Phenomena
,
Hemisphere
,
Washington, DC
.
You do not currently have access to this content.