Droplets evaporation and boiling crisis of ethanol water solution were studied experimentally. At intensive nucleate boiling within a droplet, most evaporation relates to an increase in the area of the wetting droplet surface and only 10–20% of evaporation relates to the effect of diffusion and a change in the thermal–physical coefficients. In alcohol solution with mass salt concentration C0 = 25–35%, maximal instability of the bubble microlayer is observed. The critical heat flux behaves nonmonotonously due to changes in mass alcohol concentration in the solution, and there are two extrema. The maximal value of sustainability coefficient at droplets evaporation of ethanol solution corresponds to C0 of 25–30%. The heat transfer coefficient of ethanol water solution of droplet in the suspended state decreases with a rise of wall overheating and spheroid diameter. Experimental dependence of the vapor layer height on wall overheating at boiling crisis was observed. The height of this layer at Leidenfrost temperature was many times higher than the surface microroughness value. The liquid–vapor interface oscillates, and this extends the transitional temperature zone associated with a droplet's boiling crisis.

References

1.
Borishanskiy
,
V. M.
,
1953
, “
Heat Transfer to Liquid, Flowing Free From the Surface, Heated Above the Boiling Temperature
,”
Coll. The Problems of Heat Transfer at a Change in the Aggregate State of the Matter
,
S. S.
Kutateladze
, ed.,
State Energy Publishing House
,
Moscow, Russia
, pp.
118
155
.
2.
Kutateladze
,
S. S.
,
1963
,
Fundamental of Heat Transfer
,
Academic Press
,
New York, NY
.
3.
Dunn
,
G. J.
,
Wilson
,
S. K.
,
Duffy
,
B. R.
,
David
,
S.
, and
Seffiane
,
K.
,
2009
, “
The Strong Influence of Substrate Conductivity on Droplet Evaporation
,”
J. Fluid Mech.
,
623
, pp.
234
237
.
4.
David
,
S.
,
Sefiane
,
K.
, and
Tadrist
,
L.
,
2007
, “
Experimental Investigation of the Effect of Thermal Properties of the Substrate in the Wetting and Evaporation of Sessile Drops
,”
Colloids Surf.
,
298
(1–2), pp.
108
114
.
5.
Ristenpart
,
W. D.
,
Kim
,
P. G.
,
Domingues
,
C.
,
Wan
,
J. H.
, and
Stone
,
A.
,
2007
, “
Influence of Substrate Conductivity on Circulation Reversal in Evaporating Drops
,”
Phys. Rev. Lett.
,
99
(
23
), p.
234502
.
6.
Nakoryakov
, V
. E.
,
Misyura
,
S. Y.
, and
Elistratov
,
S. L.
,
2012
, “
The Behavior of Water Droplets on the Heated Surface
,”
Int. J. Heat Mass Transfer
,
55
(23–24), pp.
6609
6617
.
7.
S.
Ya. Misyura
,
2014
, “
Nucleate Boiling in Bidistillate Droplets
,”
Int. J. Heat Mass Transfer
,
71
, pp.
197
205
.
8.
Sefiane
,
K.
,
Wilson
,
S. K.
,
David
,
S.
,
Dunn
,
G. J.
, and
Duffy
,
B. R.
,
2009
, “
On the Effect of the Atmosphere on the Evaporation of Sessile Droplets of Water
,”
J. Phys. Fluids
,
21
(
6
), p.
062101
.
9.
Nakoryakov
,
V. E.
, and
Grigorieva
,
N. I.
,
2010
,
Non-Isothermal Absorption in Thermal Transformers
,
Nauka
,
Novosibirsk, Russia
.
10.
Kuznetsov
,
G. V.
,
Feoktistov
,
D. V.
, and
Orlova
,
E. G.
,
2016
, “
Evaporation of Liquid Droplets From a Surface of Anodized Aluminum
,”
Thermophys. Aeromech.
,
23
(
1
), pp.
17
22
.
11.
Misyura
,
S. Y.
,
Nakoryakov
,
V. E.
, and
Elistratov
,
S. L.
,
2012
, “
Nonisothermal Desorption of Droplets of Complex Composition
,”
Therm. Sci.
,
16
(
4
), pp.
997
1004
.
12.
Orlova
,
E. G.
,
Kuznetsov
,
G. V.
, and
Feoktistov
,
D. V.
,
2014
, “
The Evaporation of the Water-Sodium Chlorides Solution Droplets on the Heated Substrate
,”
EPJ Web Conf.
,
76
, Article No. 01039.
13.
S. Ya.
Misyura
,
2015
, “
High Temperature Nonisothermal Desorption in a Water Salt Droplet
,”
Int. J. Therm. Sci.
,
92
, pp.
34
43
.
14.
Bobrovich
,
G. I.
, and
Kutateladze
,
S. S.
,
1986
, “
The Effect of Concentration of Water-Alcohol Mixture on the Critical Density of the Heat Flux
,”
J. Appl. Mech. Tech. Phys.
,
2
, pp.
146
148
.
15.
Bobrovich
,
G. I.
,
Gogonin
,
I. I.
,
Kutateladze
,
S. S.
, and
Moskvicheva
,
V. N.
,
1962
, “
Critical Heat Fluxes at Binary Mixtures Boiling
,”
J. Appl. Mech. Tech. Phys.
,
4
, pp.
108
111
.
16.
Fritz
,
W.
,
1935
, “
Analysis of Heat and Mass Transfer
,”
Phys. Z.
,
36
(
11
), pp.
345
349
.
17.
Kuznetsov
,
G. V.
,
Piskunov
,
M. V.
, and
Strizhak
,
P. A.
,
2016
, “
Evaporation, Boiling and Explosive Breakup of Heterogeneous Droplet in a High-Temperature Gas
,”
Int. J. Heat Mass Transfer
,
92
, pp.
360
369
.
18.
Volkov
,
R. S.
,
Kuznetsov
,
G. V.
,
Piskunov
,
M. V.
, and
Strizhak
,
P. A.
,
2015
, “
Water Droplet With Carbon Particles Moving Through High Temperature Gases
,”
ASME J. Heat Transfer
,
138
(
1
), p.
014502
.
19.
Pavlenko
,
A. N.
,
Tairov
,
E. A.
,
Zhukov
,
V. E.
,
Levin
,
A. A.
, and
Moiseev
,
M. I.
,
2014
, “
Dynamics of Transient Processes at Liquid Boiling-Up in the Conditions of Free Convection and Forced Flow in a Channel Under Nonstationary Heat Release
,”
J. Eng. Thermophys.
,
23
(
3
), pp.
173
193
.
20.
Pavlenko
,
A. N.
,
Zhukov
,
V. E.
,
Pecherkin
,
N. I.
,
Volodin
,
O. A.
,
Surtaev
,
A. S.
,
Li
,
X.
,
Gao
,
X.
,
Zhang
,
L.
,
Sui
,
H.
, and
Li
,
H.
,
2015
, “
Effect of Dynamically Controlled Irrigation of a Structured Packing on Mixture Separation Efficiency
,”
J. Eng. Thermophys.
,
24
(
3
), pp.
210
221
.
21.
Avksentyuk
,
B. P.
, and
Ovchinnikov
,
V. V.
,
2008
, “
Third Heat Transfer Crisis at Subcooling
,”
Thermophys. Aeromech.
,
15
(
2
), pp.
267
274
.
22.
Misyura
,
S. Y.
, and
Nakoryakov
,
V. E.
,
2013
, “
Nonstationary Combustion of Methane With Gas Hydrate Dissociation
,”
Energy Fuels
,
27
(
11
), pp.
7089
7097
.
23.
Nakoryakov
,
V. E.
,
Misyura
,
S. Y.
, and
Elistratov
,
S. L.
,
2013
, “
Methane Combustion in Hydrate Systems: Water-Hydrate and Water-Hydrate-Isopropanol
,”
J. Eng. Thermophys.
,
22
(
3
), pp.
169
173
.
24.
Shahidzadeh-Bonn
,
N.
,
Rafaı
,
S.
,
Azouni
,
A.
, and
Bonn
,
D.
,
2006
, “
Evaporating Droplets
,”
Fluid Mech.
,
549
, pp.
307
313
.
25.
Mollaret
,
R.
,
Serfiane
,
K.
,
Christy
,
I. R.
, and
Veyret
,
D.
,
2004
, “
Experimental and Numerical Investigation of the Evaporation Into Air of Drop on a Heated Surface
,”
Chem. Eng. Res. Des.
,
82
(
4
), pp.
471
480
.
26.
Saada
,
M. A.
,
Chikh
,
S.
, and
Tadrist
,
L.
,
2010
, “
Numerical Investigation of Heat Mass Transfer of an Evaporating Sessile Drop on a Horizontal Surface
,”
J. Phys. Fluids
,
22
(
11
), p.
112115
.
27.
Murisic
,
N.
, and
Kondic
,
L.
,
2011
, “
On Evaporation of Sessile Drops With Moving Contact Lines
,”
J. Fluid. Mech.
,
679
, pp.
219
246
.
28.
Brutin
,
D.
,
Sobac
,
B.
,
Rigollet
,
F.
, and
Le Niliot
,
C.
,
2011
, “
Infrared Visualization of Thermal Mouton Inside a Sessile Drop Deposited Onto a Heated Surface
,”
Exp. Therm. Fluid Sci.
,
35
(
3
), pp.
521
530
.
29.
Kuznetsov
,
G. V.
,
Feoktistov
,
D. V.
, and
Orlova
,
E. G.
,
2016
, “
Regimes of Spreading of a Water Droplet Over Substrates With Varying Wettability
,”
J. Eng. Phys. Thermophys.
,
89
(
2
), pp.
317
322
.
30.
Misyura
,
S. Y.
,
Nakoryakov
,
V. E.
, and
Elistratov
,
S. L.
,
2011
, “
Peculiarities of Nonisothermal Desorption of Drops of Lithium Bromide Water Solution on a Horizontal Heated Surface
,”
J. Eng. Thermophys.
,
20
(
4
), pp.
338
343
.
31.
Wachters
,
L. H.
, and
Westerling
,
N. A.
,
1966
, “
The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spheroidal State
,”
Chem. Eng. Sci.
,
21
(
19
), pp.
1047
1056
.
32.
Tartarini
,
P.
,
Corticelli
,
M. A.
, and
Tarozzi
,
L.
,
2009
, “
Dropwise Cooling: Experimental Tests by Infrared Thermography and Numerical Simulations
,”
Appl. Therm. Eng.
,
29
(
7
), pp.
1391
1397
.
33.
Seki
,
M.
,
Kawamura
,
H.
, and
Sanokawa
,
K.
,
1978
, “
Transient Temperature Profile of a Hot Wall Due to an Impinging Liquid Droplet
,”
ASME J. Heat Transfer
,
100
(
1
), pp.
167
169
.
34.
Bussmann
,
M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2000
, “
Modeling the Splash of a Droplet Impacting a Solid Surface
,”
Phys. Fluids
,
12
(
12
), pp.
3121
3132
.
35.
Senda
,
J.
,
Yamada
,
K.
,
Fujimoto
,
H.
, and
Miki
,
H.
,
1988
, “
The Heat-Transfer Characteristics of a Small Droplet Impinging Upon a Hot Surface
,”
JSME Int. J., Ser. II
,
31
(
1
), pp.
105
111
.
36.
Nakoryakov
,
V. E.
,
Misyura
,
S. Ya.
,
Elistratov
,
S. L.
, and
Dekhtyar
,
R. A.
,
2014
, “
Two-Phase Nonisothermal Flows of LiBr Water Solution in Minichannels
,”
J. Eng. Thermophys.
,
23
(
4
), pp.
1
7
.
37.
Pasandideh-Fard
,
M.
,
Qiao
,
Y. M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
1996
, “
Capillary Effects During Droplet Impact on Solid Surface
,”
Phys. Fluids
,
8
(
3
), pp.
650
659
.
38.
Nakoryakov
,
V. E.
,
Misyura
,
S. Y.
, and
Elistratov
,
S. L.
,
2013
, “
Boiling Crisis in Droplets of Ethanol Water Solution on the Heating Surface
,”
J. Eng. Thermophys.
,
22
(
1
), pp.
1
7
.
39.
Labuntsov
,
D. A.
,
2000
,
Physical Foundation of Power Engineering, Selected Works on Heat Transfer, Hydrodynamics, Thermodynamics
,
MEI
,
Moscow, Russia
.
40.
Taylor
,
G.
,
1950
, “The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes,”
Proc. R. Soc. London, Ser. A
,
201
, pp. 192–196.
You do not currently have access to this content.