A finite element method (FEM)-based thermal approach to reconstruct the disease-associated heat source distribution has been developed. The congruent relationship between the heat sources and the observed temperature is established from the FEM solution matrix. The regularization method based parameter iteration algorithm is further developed to solve the inverse bioheat transfer problems. Typical simulations on sphere model and real digital human head have been performed to validate the feasibility and efficacy of the current method. In addition, the regularization parameter is optimized to speed up the reconstruction process and reduce the thermal noises. All the results indicate that both the heat source distribution and three-dimensional (3D) temperature field within the biological body were successfully reconstructed with acceptable accuracy.

References

1.
Reilly
,
T.
, and
Down
,
A.
,
1992
, “
Investigation of Circadian Rhythms in Anaerobic Power and Capacity of the Legs
,”
J. Sport Med. Phys. Fitness
,
32
(4), pp.
343
347
.
2.
Oddo
,
M.
,
Schaller
,
M. D.
,
Feihl
,
F.
,
Ribordy
,
V.
, and
Liaudet
,
L.
,
2006
, “
From Evidence to Clinical Practice: Effective Implementation of Therapeutic Hypothermia to Improve Patient Outcome After Cardiac Arrest
,”
Crit. Care Med.
,
34
(
7
), pp.
1865
1873
.
3.
Gal
,
R.
,
Slezak
,
M.
,
Zimova
,
I.
,
Cundrle
,
I.
,
Ondraskova
,
H.
, and
Seidlova
,
D.
,
2009
, “
Therapeutic Hypothermia After Out-of-Hospital Cardiac Arrest With the Target Temperature 34–35 Degrees C
,”
Bratisl. Lek. Listy
,
110
(4), pp.
222
225
.
4.
Yan
,
J. F.
, and
Liu
,
J.
,
2008
, “
Nanocryosurgery and Its Mechanisms for Enhancing Freezing Efficiency of Tumor Tissues
,”
Nanomedicine
,
4
(1), pp.
79
87
.
5.
Liu
,
J.
, and
Deng
,
Z. S.
,
2008
,
Tumor Hyperthermia Physics
,
Science Press
,
Beijing, China
(in Chinese).
6.
Yang
,
J.
,
Li
,
K. Y.
, and
Zhang
,
S. P.
,
2006
, “
The Non-Invasive 3-D Temperature Image Reconstruction of Organism by Ansys
,”
International Conference on Machine Learning and Cybernetics
, Institute of Electrical and Electronics Engineers, Dalian, China, pp.
4268
4272
.
7.
Deng
,
Z. S.
, and
Liu
,
J.
,
2002
, “
Monte Carlo Method to Solve Multidimensional Bioheat Transfer problem
,”
Numer. Heat Transfer, Part B
,
42
(
6
), pp.
543
567
.
8.
Li
,
K. Y.
,
Dong
,
Y. G.
,
Chen
,
C.
, and
Zhang
,
S.-P.
,
2008
, “
The Noninvasive Reconstruction of 3D Temperature Field in a Biological Body With Monte Carlo Method
,”
Neurocomputing
,
72
, pp.
128
133
.
9.
Paulsen
,
K. D.
, and
Jiang
,
H.
,
1995
, “
Spatially Varying Optical Property Reconstruction Using a Finite Element Diffusion Equation Approximation
,”
Med. Phys.
,
22
(
6
), pp.
691
701
.
10.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(2), pp.
93
122
.
11.
Yu
,
D. H.
, and
Tang
,
H. Z.
,
2003
,
Numerical Solution of Differential Equation
,
Science Press
,
Beijing, China
(in Chinese).
12.
Khennane
,
A.
,
2013
,
Introduction to Finite Element Analysis Using MATLAB® and Abaqus
,
CRC Press
,
Boca Raton, FL
.
13.
Alberty
,
J.
,
Carstensen
,
C.
, and
Funken
,
S. A.
,
1999
, “
Remarks Around 50 Lines of Matlab: Short Finite Element Implementation
,”
Numer. Algorithms
,
20
, pp.
117
137
.
14.
Gu
,
X.
,
Zhang
,
Q.
,
Larcom
,
L.
, and
Jiang
,
H.
,
2004
, “
Three-Dimensional Bioluminescence Tomography With Model-Based Reconstruction
,”
Opt. Express
,
12
(
17
), pp.
3996
4000
.
15.
Li
,
S.
,
Zhang
,
Q.
, and
Jiang
,
H.
,
2006
, “
Two-Dimensional Bioluminescence Tomography: Numerical Simulations and Phantom Experiments
,”
Appl. Opt.
,
45
(
14
), pp.
3390
3394
.
16.
Cong
,
W.
,
Wang
,
G.
,
Kumar
,
D.
,
Liu
,
Y.
,
Jiang
,
M.
,
Wang
,
L.
,
Hoffman
,
E.
,
McLennan
,
G.
,
McCray
,
P.
,
Zabner
,
J.
, and
Cong
,
A.
,
2005
, “
Practical Reconstruction Method for Bioluminescence Tomography
,”
Opt. Express
,
13
(
18
), pp.
6756
6771
.
17.
Hansen
,
P. C.
,
1999
, “
The L-Curve and Its Use in the Numerical Treatment of Inverse Problems
,”
Computational Inverse Problems in Electrocardiology
,
WIT Press
,
Southampton, UK
, pp.
119
142
.
18.
Cao
,
X.
,
Zhang
,
B.
,
Wang
,
X.
,
Liu
,
F.
,
Liu
,
K.
,
Luo
,
J.
, and
Bai
,
J.
,
2013
, “
An Adaptive Tikhonov Regularization Method for Fluorescence Molecular Tomography
,”
Med. Biol. Eng. Comput.
,
51
(
8
), pp.
849
858
.
19.
Liu
,
F.
,
Cao
,
X.
,
He
,
W.
,
Song
,
J.
,
Dai
,
Z.
,
Zhang
,
B.
,
Luo
,
J.
,
Li
,
Y.
, and
Bai
,
J.
,
2012
, “
Monitoring of Tumor Response to Cisplatin by Subsurface Fluorescence Molecular Tomography
,”
J. Biomed. Opt.
,
17
, p.
040504
.
20.
Fang
,
Q.
, and
Boas
,
D. A.
,
2009
, “
Tetrahedral Mesh Generation From Volumetric Binary and Grayscale Images
,”
IEEE International Symposium on Biomedical Imaging: From Nano to Macro
, Institute of Electrical and Electronics Engineers, Boston, MA, pp.
1142
1145
.
21.
Yacoob
,
S. M.
, and
Hassan
,
N. S.
,
2012
, “
FDTD Analysis of a Noninvasive Hyperthermia System for Brain Tumors
,”
Biomed. Eng. Online
11
:47.
22.
Collins
,
C. M.
,
Liu
,
W.
,
Wang
,
J.
,
Gruetter
,
R.
,
Vaughan
,
J. T.
,
Ugurbil
,
K.
, and
Smith
,
M. B.
,
2004
, “
Temperature and SAR Calculations for a Human Head Within Volume and Surface Coils at 64 and 300 MHz
,”
J. Magn. Reson. Imaging
,
19
(
5
), pp.
650
656
.
You do not currently have access to this content.