The present work shows a numerical study of laminar, steady, and mixed convective flow inside lid-driven square cavity with intruded rectangular fin in its lower surface. The main purpose here is to maximize the heat transfer between the rectangular fin and the surrounding mixed convective flow inside a lid-driven cavity by means of constructal design. The problem is subject to two constraints, the lid-driven cavity and intruded fin areas. The ratio between the fin and cavity areas is kept fixed (ϕ = 0.05). The investigated geometry has one degree-of-freedom (DOF), the fin aspect ratio (H1/L1), which is varied in the range 0.1 ≤ H1/L1 ≤ 10. The aspect ratio of the cavity is maintained fixed (H/L = 1.0). The effect of the fin geometry over the Nusselt number is investigated for several Rayleigh (RaH = 103, 104, 105 and 106) and Reynolds numbers (ReH = 10, 102, 3.0 × 102, 5.0 × 102, 7.0 × 102 and 103). For all simulations, the Prantdl number is fixed (Pr = 0.71). The conservation equations of mass, momentum, and energy are numerically solved with the finite volume method. Results showed that fin geometry (H1/L1) has strong influence over the Nusselt number in the fin. It was also observed that the effect of H1/L1 over Nusselt number changes considerably for different Rayleigh numbers and for the lowest magnitudes of Reynolds numbers, for example, differences of nearly 770% between RaH = 106 and forced convective flow were observed for the lowest Reynolds number studied (ReH = 10).

References

1.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
, 4th ed.,
Wiley
,
Hoboken, NJ
.
2.
Prasad
,
A. K.
, and
Koseff
,
J. R.
,
1989
, “
Reynolds Number and End-Wall Effects on a Lid-Driven Cavity Flow
,”
Phys. Fluids A
,
1
(
2
), pp.
208
218
.
3.
Prasad
,
A. K.
, and
Koseff
,
J. R.
,
1996
, “
Combined Forced and Natural Convection Heat Transfer in a Deep Lid-Driven Cavity Flow
,”
Int. J. Heat Fluid Flow
,
17
(
5
), pp.
460
467
.
4.
dos Santos
,
E. D.
,
Piccoli
,
G. L.
,
França
,
F. H. R.
, and
Petry
,
A. P.
,
2011
, “
Analysis of Mixed Convection in Transient Laminar and Turbulent Flows in Driven Cavities
,”
Int. J. Heat Mass Transfer
,
54
(
21–22
), pp.
4585
4595
.
5.
Trias
,
F. X.
,
Gorobets
,
A.
,
Oliva
,
A.
, and
Pérez-Segarra
,
C. D.
,
2013
, “
DNS and Regularization Modeling of a Turbulent Differentially Heated Cavity of Aspect Ratio 5
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
171
182
.
6.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
,
1982
, “
High-Re Solutions for Incompressible Flow Using the Navier–Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
.
7.
Erturk
,
E.
, and
Gökçöl
,
C.
,
2006
, “
Fourth-Order Compact Formulation of Navier–Stokes Equations and Driven Cavity Flow at High Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
50
(
4
), pp.
421
436
.
8.
Lin
,
L.-S.
,
Chen
,
Y.-C.
, and
Lin
,
C.-A.
,
2011
, “
Multi Relaxation Time Lattice Boltzmann Simulations of Deep Lid Driven Cavity Flows at Different Aspect Ratios
,”
Comput. Fluids
,
45
(
1
), pp.
233
240
.
9.
Iwatsu
,
R.
, and
Hyun
,
J. M.
,
1995
, “
Three-Dimensional Driven-Cavity Flows With a Vertical Temperature Gradient
,”
Int. J. Heat Mass Transfer
,
38
(
18
), pp.
3319
3328
.
10.
Dos Santos
,
E. D.
,
Petry
,
A. P.
,
Rocha
,
L. A. O.
, and
França
,
F. H. R.
,
2013
, “
Numerical Study of Forced Convection Lid-driven Cavity Flows Using Large Eddy Simulation (LES)
,”
J. Energy Power Eng.
,
7
, pp.
1669
1680
.
11.
Ismael
,
M. A.
,
Pop
,
I.
, and
Chamkha
,
A. J.
,
2014
, “
Mixed Convection in a Lid-Driven Square Cavity With Partial Slip
,”
Int. J. Therm. Sci.
,
82
, pp.
47
61
.
12.
Peng
,
S.-H.
, and
Davidson
,
L.
,
2001
, “
Large Eddy Simulation for Turbulent Buoyant Flow in a Confined Cavity
,”
Int. J. Heat Fluid Flow
,
22
(
3
), pp.
323
331
.
13.
Goodarzi
,
M.
,
Safaei
,
M. R.
,
Karimipour
,
A.
,
Hooman
,
K.
,
Dahari
,
M.
,
Kazi
,
S. N.
, and
Sadeghinezhad
,
E.
,
2014
, “
Comparison of the Finite Volume and Lattice Boltzmann Methods for Solving Natural Convection Heat Transfer Problems Inside Cavities and Enclosures
,”
Abstr. Appl. Anal.
,
2014
, pp.
1
15
.
14.
Ibrahim
,
A.
, and
Lemonnier
,
D.
,
2009
, “
Numerical Study of Coupled Double-Diffusive Natural Convection and Radiation in a Square Cavity Filled With a N2–CO2 Mixture
,”
Int. Commun. Heat Mass Transfer
,
36
(
3
), pp.
197
202
.
15.
Mendu
,
S. S.
, and
Das
,
P. K.
,
2013
, “
Fluid Flow in a Cavity Driven by an Oscillating Lid—A Simulation by Lattice Boltzmann Method
,”
Eur. J. Mech. B
,
39
, pp.
59
70
.
16.
Dos Santos
,
E. D.
,
Isoldi
,
L. A.
,
Petry
,
A. P.
, and
França
,
F. H. R.
,
2013
, “
Numerical Investigation of Turbulent Internal Flow With Combined Convective and Radiative Heat Transfer in a Participant Medium
,”
22nd International Congress of Mechanical Engineering
, Ribeirão Preto, pp.
941
951
.
17.
Cheng
,
C.-H.
, and
Chen
,
C.-L.
,
2005
, “
Buoyancy-Induced Periodic Flow and Heat Transfer in Lid-Driven Cavities With Different Cross-Sectional Shapes
,”
Int. Commun. Heat Mass Transfer
,
32
(
3–4
), pp.
483
490
.
18.
Mercan
,
H.
, and
Atalık
,
K.
,
2009
, “
Vortex Formation in Lid-Driven Arc-Shape Cavity Flows at High Reynolds Numbers
,”
Eur. J. Mech. B
,
28
(
1
), pp.
61
71
.
19.
Oztop
,
H. F.
,
Zhao
,
Z.
, and
Yu
,
B.
,
2009
, “
Fluid Flow Due to Combined Convection in Lid-Driven Enclosure Having a Circular Body
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
886
901
.
20.
Sun
,
C.
,
Yu
,
B.
,
Oztop
,
H. F.
,
Wang
,
Y.
, and
Wei
,
J.
,
2011
, “
Control of Mixed Convection in Lid-Driven Enclosures Using Conductive Triangular Fins
,”
Int. J. Heat Mass Transfer
,
54
(
4
), pp.
894
909
.
21.
Shi
,
X.
, and
Khodadadi
,
J. M.
,
2005
, “
Periodic State of Fluid Flow and Heat Transfer in a Lid-Driven Cavity Due to an Oscillating Thin Fin
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5323
5337
.
22.
Dos Santos
,
E. D.
,
Isoldi
,
L. A.
,
Souza
,
J. A.
,
Goulart
,
M. M.
,
Rodrigues
,
M. K.
,
Seibt
,
F. M.
, and
Rocha
,
L. A. O.
,
2013
, “
Constructal Design of a Rectangular Fin Intruded into Forced Convective Lid-Driven Cavity Flows
,”
Proceedings of Construction Law Conference
, Nanjing, pp.
126
134
.
23.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
New York
.
24.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
Wiley
,
Hoboken, NJ
.
25.
Bejan
,
A.
, and
Zane
,
J. P.
,
2012
,
Design in Nature: How the Constructal Law Governs Evolution in Biology, Physics, Technology, and Social Organization
, 1st ed.,
Doubleday
,
New York
.
26.
Bejan
,
A.
, and
Lorente
,
S.
,
2011
, “
The Constructal Law and the Evolution of Design in Nature
,”
Phys. Life Rev.
,
8
(
3
), pp.
209
240
.
27.
Reis
,
A. H.
, and
Bejan
,
A.
,
2006
, “
Constructal Theory of Global Circulation and Climate
,”
Int. J. Heat Mass Transfer
,
49
(
11–12
), pp.
1857
1875
.
28.
Bejan
,
A.
, and
Merkx
,
G. W.
,
2007
,
Constructal Theory of Social Dynamics
,
Springer
,
New York
.
29.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2013
,
Constructal Law and the Unifying Principle of Design
,
Springer
,
New York
.
30.
Lorenzini
,
G.
,
Biserni
,
C.
,
Isoldi
,
L. A.
,
dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2011
, “
Constructal Design Applied to the Geometric Optimization of Y-shaped Cavities Embedded in a Conducting Medium
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041008
.
31.
Rocha
,
L. A. O.
,
Lorenzini
,
E.
, and
Biserni
,
C.
,
2005
, “
Geometric Optimization of Shapes on the Basis of Bejan's Constructal Theory
,”
Int. Commun. Heat Mass Transfer
,
32
(
10
), pp.
1281
1288
.
32.
Lorenzini
,
G.
,
Biserni
,
C.
,
Estrada
,
E. D.
,
Isoldi
,
L. A.
,
dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2014
, “
Constructal Design of Convective Y-Shaped Cavities by Means of Genetic Algorithm
,”
ASME J. Heat Transfer
,
136
(
7
), p.
071702
.
33.
Xie
,
Z.
,
Chen
,
L.
, and
Sun
,
F.
,
2010
, “
Geometry Optimization of T-Shaped Cavities According to Constructal Theory
,”
Math. Comput. Model.
,
52
(
9–10
), pp.
1538
1546
.
34.
Kepes Rodrigues
,
M.
,
da Silva Brum
,
R.
,
Vaz
,
J.
,
Oliveira Rocha
,
L. A.
,
Domingues dos Santos
,
E.
, and
Isoldi
,
L. A.
,
2015
, “
Numerical Investigation About the Improvement of the Thermal Potential of an Earth-Air Heat Exchanger (EAHE) Employing the Constructal Design Method
,”
Renewable Energy
,
80
, pp.
538
551
.
35.
dos Santos
,
E. D.
,
Machado
,
B. N.
,
Zanella
,
M. M.
,
das Neves Gomes
,
M.
,
Souza
,
J. A.
,
Isoldi
,
L. A.
, and
Rocha
,
L. A. O.
,
2014
, “
Numerical Study of the Effect of the Relative Depth on the Overtopping Wave Energy Converters According to Constructal Design
,”
Defect Diffus. Forum
,
348
, pp.
232
244
.
36.
Hajmohammadi
,
M. R.
,
Lorenzini
,
G.
,
Joneydi Shariatzadeh
,
O.
, and
Biserni
,
C.
,
2015
, “
Evolution in the Design of V-Shaped Highly Conductive Pathways Embedded in a Heat-Generating Piece
,”
ASME J. Heat Transfer
,
137
(
6
), p.
061001
.
37.
Hajmohammadi
,
M.
,
Moulod
,
M.
,
Shariatzadeh
,
O. J.
, and
Nourazar
,
S.
,
2014
, “
Essential Reformulations for Optimization of Highly Conductive Inserts Embedded Into a Rectangular Chip Exposed to a Uniform Heat Flux
,”
Proc. Inst. Mech. Eng. Part C
,
228
(
13
), pp.
2337
2346
.
38.
da
,
S. D.
,
Estrada
,
E.
,
Fagundes
,
T. M.
,
Isoldi
,
L. A.
,
dos Santos
,
E. D.
,
Xie
,
G.
, and
Rocha
,
L. A. O.
,
2015
, “
Constructal Design Associated to Genetic Algorithm of Asymmetric V-Shaped Pathways
,”
ASME J. Heat Transfer
,
137
(
6
), p.
061010
.
39.
Gonzales
,
G. V.
,
da
,
S. D.
,
Estrada
,
E.
,
Emmendorfer
,
L. R.
,
Isoldi
,
L. A.
,
Xie
,
G.
,
Rocha
,
L. A. O.
, and
dos Santosa
,
E. D.
,
2015
, “
A Comparison of Simulated Annealing Schedules for constructal design of Complex Cavities Intruded Into Conductive Walls With Internal Heat Generation
,”
Energy
,
93
, pp.
372
382
.
40.
Ko
,
T.
, and
Ting
,
K.
,
2006
, “
Optimal Reynolds Number for the Fully Developed Laminar Forced Convection in a Helical Coiled Tube
,”
Energy
,
31
(
12
), pp.
2142
2152
.
41.
Xie
,
G.
,
Song
,
Y.
,
Asadi
,
M.
, and
Lorenzini
,
G.
,
215
, “
Optimization of Pin-Fins for a Heat Exchanger by Entropy Generation Minimization and Constructal Law
,”
ASME J. Heat Transfer
,
137
(
6
), p.
061901
.
42.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2014
, “
Bejan's Constructal Theory and Overall Performance Assessment: The Global Optimization for Heat Exchanging Finned Modules
,”
Therm. Sci.
,
18
(
2
), pp.
339
348
.
43.
Najafi
,
H.
,
Najafi
,
B.
, and
Hoseinpoori
,
P.
,
2011
, “
Energy and Cost Optimization of a Plate and Fin Heat Exchanger Using Genetic Algorithm
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1839
1847
.
44.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson
,
New York/London
.
45.
fluent, Documentation Manual—fluent 6.3.16, 2007.
46.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw Hill
,
New York
.
47.
Barakos
,
G.
,
Mitsoulis
,
E.
, and
Assimacopolous
,
D.
,
1994
, “
Natural Convection Flow in a Square Cavity Revisited: Laminar and Turbulent Models With Wall Functions
,”
Int. J. Numer. Methods Fluids
,
18
(
7
), pp.
695
719
.
48.
Davis
,
G. V.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
.
You do not currently have access to this content.