Template-based chemical vapor deposition (TB-CVD) is a versatile technique for manufacturing carbon nanotubes (CNTs) or CNT-based devices for various applications. In this process, carbon is deposited by thermal decomposition of a carbon-based precursor gas inside the nanoscopic cylindrical pores of anodized aluminum oxide (AAO) templates to form CNTs. Experimental results show that CNT formation in templates is controlled by TB-CVD process parameters, such as time, temperature, and flow rate. However, optimization of this process is done empirically, requiring tremendous time and effort. Moreover, there is a need for a more comprehensive and low cost way to characterize the flow in the furnace in order to understand how process parameters may affect CNT formation. In this report, we describe the development of four, 3D numerical models (73 < Re < 1100), each varying in complexity, to elucidate the thermofluid behavior in the TB-CVD process. Using computational fluid dynamic (CFD) commercial codes, the four models are compared to determine how the presence of the template and boat, composition of the precursor gas, and consumption of species at the template surface affect the temperature profiles, velocity fields, mixed convection, and strength of circulations in the system. The benefits and shortcomings of each model, as well as a comparison of model accuracy and computational time, are presented. Due to limited data, simulation results are validated by experiments and visual observations of the flow structure whenever possible. Decent agreement between experimental data and simulation supports the reliability of the simulation.

References

References
1.
Weihua
,
H.
,
Shen
,
H. U.
,
Daiwen
,
P.
,
Zongli
,
W.
, and
Jieke
,
C.
,
2000
, “
Monitoring the Secretion From Single Cells With Temporal and Spatial Resolution, Monitoring the Secretion From Single Cells With Temporal and Spatial Resolution
,”
Chin. Sci. Bull.
,
45
(
4
), pp.
289
295
.
2.
Santra
,
T. S.
, and
Tseng
,
F. G.
,
2014
, “
Micro/Nanofluidic Devices for Single Cell Analysis
,”
Micromachines
,
5
(
2
), pp.
154
157
.
3.
Schrlau
,
M. G.
, and
Bau
,
H. H.
,
2009
, “
Carbon-Based Nanoprobes for Cell Biology
,”
Microfluid. Nanofluid.
,
7
(
4
), pp.
439
450
.
4.
Schrlau
,
M. G.
,
Brailoiu
,
E.
,
Patel
,
S.
,
Gogotsi
,
Y.
,
Dun
,
N. J.
, and
Bau
,
H. H.
,
2008
, “
Carbon Nanopipettes Characterize Calcium Release Pathways in Breast Cancer Cells
,”
Nanotechnology
,
19
(
32
), p.
325102
.
5.
Schrlau
,
M. G.
,
Falls
,
E. M.
,
Ziober
,
B. L.
, and
Bau
,
H. H.
,
2008
, “
Carbon Nanopipettes for Cell Probes and Intracellular Injection
,”
Nanotechnology
,
19
(
1
), p.
015101
.
6.
Niu
,
J. J.
,
Schrlau
,
M. G.
,
Friedman
,
G.
, and
Gogotsi
,
Y.
,
2011
, “
Carbon Nanotube-Tipped Endoscope for In Situ Intracellular Surface-Enhanced Raman Spectroscopy
,”
Small
,
7
(
4
), pp.
540
545
.
7.
Schrlau
,
M. G.
,
Dun
,
N. J.
, and
Bau
,
H. H.
,
2009
, “
Cell Electrophysiology With Carbon Nanopipettes
,”
ACS Nano
,
3
(
3
), pp.
563
568
.
8.
Singhal
,
R.
,
Orynbayeva
,
Z.
,
Kalyana Sundaram
,
R. V.
,
Niu
,
J. J.
,
Bhattacharyya
,
S.
,
Vitol
,
E. A.
,
Schrlau
,
M. G.
,
Papazoglou
,
E. S.
,
Friedman
,
G.
, and
Gogotsi
,
Y.
,
2011
, “
Multifunctional Carbon-Nanotube Cellular Endoscopes
,”
Nat. Nanotechnol.
,
6
(
1
), pp.
57
64
.
9.
Orynbayeva
,
Z.
,
Singhal
,
R.
,
Vitol
,
E. A.
,
Schrlau
,
M. G.
,
Papazoglou
,
E.
,
Friedman
,
G.
, and
Gogotsi
,
Y.
,
2012
, “
Physiological Validation of Cell Health Upon Probing With Carbon Nanotube Endoscope and Its Benefit for Single-Cell Interrogation
,”
Nanomed. Nanotechnol. Biol. Med.
,
8
(
5
), pp.
590
598
.
10.
Choy
,
K. L.
,
2003
, “
Chemical Vapour Deposition of Coatings
,”
Prog. Mater. Sci.
,
48
(
2
), pp.
57
170
.
11.
Martin
,
C. R.
,
1994
, “
Nanomaterials: A Membrane-Based Synthetic Approach
,”
Science
,
266
(
5193
), pp.
1961
1966
.
12.
Kyotani
,
T.
,
Tsai
,
L.
, and
Tomita
,
A.
,
1995
, “
Formation of Ultrafine Carbon Tubes by Using an Anodic Aluminum Oxide Film as a Template
,”
Chem. Mater.
,
7
(
8
), pp.
1427
1428
.
13.
Kyotani
,
T.
,
Tsai
,
L.
, and
Tomita
,
A.
,
1996
, “
Preparation of Ultrafine Carbon Tubes in Nanochannels of an Anodic Aluminum Oxide Film
,”
Chem. Mater.
,
8
(
8
), pp.
2109
2113
.
14.
Che
,
G.
,
Lakshmi
,
B. B.
,
Fisher
,
E. R.
, and
Martin
,
C. R.
,
1998
, “
Carbon Nanotubule Membranes for Electrochemical Energy Storage and Production
,”
Nature
,
393
(
6683
), pp.
346
349
.
15.
Golshadi
,
M.
, and
Schrlau
,
M. G.
,
2013
, “
Template-Based Synthesis of Aligned Carbon Nanotube Arrays for Microfluidic and Nanofluidic Applications
,”
ECS Trans.
,
50
(
33
), pp.
1
14
.
16.
Vitol
,
E. A.
,
Schrlau
,
M. G.
,
Bhattacharyya
,
S.
,
Ducheyne
,
P.
,
Bau
,
H. H.
,
Friedman
,
G.
, and
Gogotsi
,
Y.
,
2009
, “
Effects of Deposition Conditions on the Structure and Chemical Properties of Carbon Nanopipettes
,”
Chem. Vap. Deposition
,
15
(
7–9
), pp.
204
208
.
17.
Golshadi
,
M.
,
Maita
,
J.
,
Lanza
,
D.
,
Zeiger
,
M.
,
Presser
,
V.
, and
Schrlau
,
M. G.
,
2014
, “
Effects of Synthesis Parameters on Carbon Nanotubes Manufactured by Template-Based Chemical Vapor Deposition
,”
Carbon
,
80
, pp.
28
39
.
18.
Kuwana
,
K.
,
Endo
,
H.
,
Saito
,
K.
,
Qian
,
D.
,
Andrews
,
R.
, and
Grulke
,
E. A.
,
2005
, “
Catalyst Deactivation in CVD Synthesis of Carbon Nanotubes
,”
Carbon
,
43
(
2
), pp.
253
260
.
19.
Endo
,
H.
,
Kuwana
,
K.
,
Saito
,
K.
,
Qian
,
D.
,
Andrews
,
R.
, and
Grulke
,
E. A.
,
2004
, “
CFD Prediction of Carbon Nanotube Production Rate in a CVD Reactor
,”
Chem. Phys. Lett.
,
387
(
4–6
), pp.
307
311
.
20.
Ibrahim
,
J.
, and
Paolucci
,
S.
,
2011
, “
Transient Solution of Chemical Vapor Infiltration/Deposition in a Reactor
,”
Carbon
,
49
(
3
), pp.
915
930
.
21.
Mishra
,
P.
, and
Verma
,
N.
,
2012
, “
A CFD Study on a Vertical Chemical Vapor Deposition Reactor for Growing Carbon Nanofibers
,”
Chem. Eng. Res. Des.
,
90
(
12
), pp.
2293
2301
.
22.
Kuwana
,
K.
,
Li
,
T.
, and
Saito
,
K.
,
2006
, “
Gas-Phase Reactions During CVD Synthesis of Carbon Nanotubes: Insights Via Numerical Experiments
,”
Chem. Eng. Sci.
,
61
(
20
), pp.
6718
6726
.
23.
Cheng
,
W. T.
,
Li
,
H. C.
, and
Huang
,
C. N.
,
2008
, “
Simulation and Optimization of Silicon Thermal CVD Through CFD Integrating Taguchi Method
,”
Chem. Eng. J.
,
137
(
3
), pp.
603
613
.
24.
Evans
,
G.
, and
Greif
,
R.
,
1993
, “
Thermally Unstable Convection With Applications to Chemical Vapor Deposition Channel Reactors
,”
Int. J. Heat Mass Transfer
,
36
(
11
), pp.
2769
2781
.
25.
Spall
,
R. E.
,
1996
, “
Observations of Spanwise Symmetry Breaking for Unsteady Mixed Convection in Horizontal Ducts
,”
ASME J. Heat Transfer
,
118
(
4
), pp.
885
888
.
26.
Tuh
,
J. L.
, and
Lin
,
T. F.
,
2003
, “
Visualization of Return Flow Structure in Mixed Convection of Gas Over a Heated Circular Plate in a Horizontal Flat Duct
,”
J. Cryst. Growth
,
257
(
1–2
), pp.
199
211
.
27.
Nicolas
,
X.
,
2002
, “
Revue Bibliographique Sur Les écoulements de Poiseuille–Rayleigh–Bénard : écoulements de Convection Mixte en Conduites Rectangulaires Horizontales Chauffées par le Bas
,”
Int. J. Therm. Sci.
,
41
(
10
), pp.
961
1016
.
28.
Kelly
,
R. E.
,
1994
, “
The Onset and Development of Thermal Convection in Fully Developed Shear Flows
,”
Advances in Applied Mechanics
, J. W. H. and
T. Y.
Wu
, eds.,
Elsevier
,
Cambridge, MA
, pp.
35
112
.
29.
Nicolas
,
X.
,
Benzaoui
,
A.
, and
Xin
,
S.
,
2008
, “
Numerical Simulation of Thermoconvective Flows and More Uniform Depositions in a Cold Wall Rectangular APCVD Reactor
,”
J. Cryst. Growth
,
310
(
1
), pp.
174
186
.
30.
Wang
,
Q.
,
Yoo
,
H.
, and
Jaluria
,
Y.
,
2003
, “
Convection in a Horizontal Rectangular Duct Under Constant and Variable Property Formulations
,”
Int. J. Heat Mass Transfer
,
46
(
2
), pp.
297
310
.
31.
Cheng
,
T. S.
, and
Hsiao
,
M. C.
,
2008
, “
Numerical Investigations of Geometric Effects on Flow and Thermal Fields in a Horizontal CVD Reactor
,”
J. Cryst. Growth
,
310
(
12
), pp.
3097
3106
.
32.
Chiu
,
W. K. S.
,
Richards
,
C. J.
, and
Jaluria
,
Y.
,
2000
, “
Flow Structure and Heat Transfer in a Horizontal Converging Channel Heated From Below
,”
Phys. Fluids
,
12
(
8
), pp.
2128
2136
.
33.
Fotiadis
,
D. I.
, and
Jensen
,
K. F.
,
1990
, “
Thermophoresis of Solid Particles in Horizontal Chemical Vapor Deposition Reactors
,”
J. Cryst. Growth
,
102
(
4
), pp.
743
761
.
34.
Visser
,
E. P.
,
Kleijn
,
C. R.
,
Govers
,
C. A. M.
,
Hoogendoorn
,
C. J.
, and
Giling
,
L. J.
,
1989
, “
Return Flows in Horizontal MOCVD Reactors Studied With the Use of TiO2 Particle Injection and Numerical Calculations
,”
J. Cryst. Growth
,
94
(
4
), pp.
929
946
.
35.
Karki
,
K. C.
,
Sathyamurthy
,
P. S.
, and
Patankar
,
S. V.
,
1993
, “
Three-Dimensional Mixed Convection in a Horizontal Chemical Vapor Deposition Reactor
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
803
806
.
36.
Kleijn
,
C. R.
, and
Hoogendoorn
,
C. J.
,
1991
, “
A Study of 2- and 3-D Transport Phenomena in Horizontal Chemical Vapor Deposition Reactors
,”
Chem. Eng. Sci.
,
46
(
1
), pp.
321
334
.
37.
Danckwerts
,
P. V.
, and
Lannus
,
A.
,
1970
, “
Gas-Liquid Reactions
,”
J. Electrochem. Soc.
,
117
(
10
)(
10
(
10
)), pp.
369C
370C
.
38.
Levenspiel
,
O.
,
1999
, “
Chemical Reaction Engineering
,”
Ind. Eng. Chem. Res.
,
38
(
11
), pp.
4140
4143
.
39.
A.
Lautenschleger
, and
Olenberg
,
A.
,
2015
, “
A Systematic CFD-Based Method to Investigate and Optimise Novel Structured Packings
,”
Chem. Eng. Sci.
,
122
, pp.
452
464
.
40.
Vahedein
,
Y. S.
, and
Schrlau
,
M. G.
,
2015
, “
Numerical Model of Template-Based Chemical Vapor Deposition Processes to Manufacture Carbon Nanotubes for Biological Devices
,”
ASME
Paper No. ICNMM2015-48520, p. V001T03A005.
41.
Giling
,
L. J.
,
1982
, “
Gas Flow Patterns in Horizontal Epitaxial Reactor Cells Observed by Interference Holography
,”
J. Electrochem. Soc.
,
129
(
3
), pp.
634
644
.
42.
Rogers
,
G. F. C.
, and
Mayhew
,
Y. R.
,
1994
,
Thermodynamic and Transport Properties of Fluids
,
Wiley-Blackwell
,
Oxford, UK
.
43.
Patankar
,
S. V.
,
Ramadhyani
,
S.
, and
Sparrow
,
E. M.
,
1978
, “
Effect of Circumferentially Nonuniform Heating on Laminar Combined Convection in a Horizontal Tube
,”
ASME J. Heat Transfer
,
100
(
1
), pp.
63
70
.
44.
Shannon
,
R. L.
, and
Depew
,
C. A.
,
1968
, “
Combined Free and Forced Laminar Convection in a Horizontal Tube With Uniform Heat Flux
,”
ASME J. Heat Transfer
,
90
(
3
), pp.
353
357
.
45.
Choudhury
,
D.
, and
Patankar
,
S. V.
,
1988
, “
Combined Forced and Free Laminar Convection in the Entrance Region of an Inclined Isothermal Tube
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
901
909
.
46.
Bergles
,
A. E.
, and
Simonds
,
R. R.
,
1971
, “
Combined Forced and Free Convection for Laminar Flow in Horizontal Tubes With Uniform Heat Flux
,”
Int. J. Heat Mass Transfer
,
14
(
12
), pp.
1989
2000
.
47.
Newell
,
P. H.
, and
Bergles
,
A. E.
,
1970
, “
Analysis of Combined Free and Forced Convection for Fully Developed Laminar Flow in Horizontal Tubes
,”
ASME J. Heat Transfer
,
92
(
1
), pp.
83
93
.
48.
Chapman
,
S.
, and
Cowling
,
T. G.
,
1970
,
The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
, 3rd ed.,
Cambridge University Press, London
.
49.
Jones
,
J. E.
,
1924
, “
On the Determination of Molecular Fields. II. From the Equation of State of a Gas
,”
Proc. R. Soc. A
,
106
(
738
), pp.
463
477
.
50.
Haar
,
D. T.
,
1954
, “
Molecular Theory of Gases and Liquids. Joseph O. Hirschfelder, Charles F. Curtiss, and R. Byron Bird. Wiley, New York; Chapman & Hall, London, 1954
,”
Science
,
120
(
3131
), pp.
1097
1097
.
51.
Guermond
,
J. L.
,
Minev
,
P.
, and
Shen
,
J.
,
2006
, “
An Overview of Projection Methods for Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
44–47
), pp.
6011
6045
.
52.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.
53.
Guillén
,
I.
, and
Treviño
,
C.
,
2014
, “
Unsteady Laminar Mixed Convection Heat Transfer From a Horizontal Isothermal Cylinder in Contra-Flow: Buoyancy and Wall Proximity Effects on the Flow Response and Wake Structure
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
30
46
.
54.
Ingham
,
D. D. B.
, and
Merkin
,
D. J. H.
,
1981
, “
Unsteady Mixed Convection From an Isothermal Circular Cylinder
,”
Acta Mech.
,
38
(
1–2
), pp.
55
69
.
55.
Jain
,
P. C.
, and
Lohar
,
B. L.
,
1979
, “
Unsteady Mixed Convection Heat Transfer From a Horizontal Circular Cylinder
,”
ASME J. Heat Transfer
,
101
(
1
), pp.
126
131
.
56.
Lax
,
P. D.
, and
Richtmyer
,
R. D.
,
1956
, “
Survey of the Stability of Linear Finite Difference Equations
,”
Commun. Pure Appl. Math.
,
9
(
2
), pp.
267
293
.
57.
Jensen
,
K. F.
, and
Einset
,
E. O.
,
1991
, “
Flow Phenomena in Chemical Vapor Deposition of Thin Films
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
197
232
.
58.
Sornek
,
R. J.
,
Dobashi
,
R.
, and
Hirano
,
T.
,
2000
, “
Effect of Turbulence on Vaporization, Mixing, and Combustion of Liquid-Fuel Sprays
,”
Combust. Flame
,
120
(
4
), pp.
479
491
.
59.
Cho
,
W.
,
Schulz
,
M.
, and
Shanov
,
V.
,
2013
, Kinetics of Growing Centimeter Long Carbon Nanotube Arrays, Syntheses and Applications of Carbon Nanotubes and Their Composites,
S.
Suzuki
, ed.,
InTech
,
Rijeka, Croatia
.
60.
Chase
,
M. W.
,
1997
, “
Constants of Inorganic Substances. A Handbook. Revised and Augmented Edition. By R. A. Lidin, L. L. Andreeva, and V. A. Molochko. Begell House, Inc.: New York. 1996. 444 pp., ISBN 1-56700-014-X
,”
J. Chem. Eng. Data
,
42
(
1
), pp.
223
224
.
You do not currently have access to this content.