An approximate solution of the classical thermodynamic model for compressible heat transfer of a quiescent supercritical fluid under microgravity leads to the well-known piston effect relaxation time tPE=tD/(γ01)2, where tD is the thermal diffusion relaxation time and γ0 is the ratio between specific heats. This relaxation time represents an upper bound for the asymptotic bulk temperature behavior during very early times, which shows a strong algebraic relaxation due to the piston effect. This paper demonstrates that an additional relaxation time associated with the piston effect exists in this classical thermodynamic model, namely, tE=tD/γ0. Furthermore, it shows that tE represents the time required by the bulk temperature to reach steady-state. Comparisons with a numerical solution of the compressible Navier–Stokes equations as well as experimental data indicate the validity of this new analytical expression and its physical interpretation.

References

References
1.
Dahl
,
D.
, and
Moldover
,
M. R.
,
1972
, “
Thermal Relaxation Near the Critical Point
,”
Phys. Rev. A
,
6
(
5
), pp.
1915
1920
.
2.
Nitsche
,
K.
, and
Straub
,
J.
,
1987
, “
The Critical Hump of CV Under Microgravity, Results From D-Spacelab Experiment
,”
6th European Symposium on Material Sciences Under Microgravity Conditions
, ESA Paper No. SP-256.
3.
Boukari
,
H.
,
Shaumeyer
,
J. N.
,
Briggs
,
M. E.
, and
Gammon
,
R. W.
,
1990
, “
Critical Speeding Up in Pure Fluids
,”
Phys. Rev. A
,
41
(
4
), pp.
2260
2263
.
4.
Onuki
,
A.
,
Hao
,
H.
, and
Ferrell
,
R. A.
,
1990
, “
Fast Adiabatic Equilibration in a Single-Component Fluid Near the Liquid-Vapor Critical Point
,”
Phys. Rev. A
,
41
(
4
), pp.
2256
2259
.
5.
Zappoli
,
B.
,
Bailly
,
D.
,
Garrabos
,
Y.
,
LeNeindre
,
B.
,
Guenoun
,
P.
, and
Beysens
,
D.
,
1990
, “
Anomalous Heat Transport by the Piston Effect in Supercritical Fluids Under Zero Gravity
,”
Phys. Rev. A
,
41
(
4
), pp.
2264
2267
.
6.
Zappoli
,
B.
,
2003
, “
Near-Critical Fluid Hydrodynamics
,”
C. R. Mec.
,
331
(
10
), pp.
713
726
.
7.
Barmatz
,
M.
,
Hahn
,
I.
,
Lipa
,
J. A.
, and
Duncan
,
R. V.
,
2007
, “
Critical Phenomena in Microgravity: Past, Present and Future
,”
Rev. Mod. Phys.
,
79
(
1
), pp.
1
52
.
8.
Carlès
,
P.
,
2010
, “
A Brief Review of the Thermophysical Properties of Supercritical Fluids
,”
J. Supercrit. Fluids
,
53
(1–3), pp.
2
11
.
9.
Shen
,
B.
, and
Zhang
,
P.
,
2013
, “
An Overview of Heat Transfer Near the Liquid-Gas Critical Point Under the Influence of the Piston Effect: Phenomena and Theory
,”
Int. J. Therm. Sci.
,
71
, pp.
1
19
.
10.
Onuki
,
A.
, and
Ferrell
,
R. A.
,
1990
, “
Adiabatic Heating Effect Near the Gas-Liquid Critical Point
,”
Physica A
,
164
(
2
), pp.
245
264
.
11.
Ferrell
,
R. A.
, and
Hao
,
H.
,
1993
, “
Adiabatic Temperature Changes in a One-Component Fluid Near the Liquid–Vapor Critical Point
,”
Physica A
,
197
(1–2), pp.
23
46
.
12.
Garrabos
,
Y.
,
Bonetti
,
M.
,
Beysens
,
D.
,
Perrot
,
F.
,
Fröhlich
,
T.
,
Carlès
,
P.
, and
Zappoli
,
B.
,
1998
, “
Relaxation of a Supercritical Fluid After a Heat Pulse in the Absence of Gravity Effects: Theory and Experiments
,”
Phys. Rev. E
,
57
(
5
), pp.
5665
5681
.
13.
Carlès
,
P.
,
Zhong
,
F.
,
Weilert
,
M.
, and
Barmatz
,
M.
,
2005
, “
Temperature and Density Relaxation Close to the Liquid-Gas Critical Point: An Analytical Solution for Cylindrical Cells
,”
Phys. Rev. E
,
71
(
4
), p.
041201
.
14.
Nakano
,
A.
, and
Shiraishi
,
M.
,
2004
, “
Numerical Simulation for the Piston Effect and Thermal Diffusion Observed in Supercritical Nitrogen
,”
Cryogenics
,
44
(
12
), pp.
867
873
.
15.
Nakano
,
A.
, and
Shiraishi
,
M.
,
2005
, “
Piston Effect in Supercritical Nitrogen Around the Pseudo-Critical Line
,”
Int. Commun. Heat Mass Transfer
,
32
(
9
), pp.
1152
1164
.
16.
Zhang
,
P.
, and
Shen
,
B.
,
2009
, “
Thermoacoustic Wave Propagation and Reflection Near the Liquid–Gas Critical Point
,”
Phys. Rev. E
,
79
(
6
), p.
060103
.
17.
Miura
,
Y.
,
Yoshihara
,
S.
,
Ohnishi
,
M.
,
Honda
,
K.
,
Matsumoto
,
M.
,
Kawai
,
J.
,
Ishikawa
,
M.
,
Kobayashi
,
H.
, and
Onuki
,
A.
,
2006
, “
High-Speed Observation of the Piston Effect Near the Gas–Liquid Critical Point
,”
Phys. Rev. E
,
74
(
1
), p.
010101(R)
.
18.
Shen
,
B.
, and
Zhang
,
P.
,
2010
, “
On the Transition From Thermoacoustic Convection to Diffusion in a Near-Critical Fluid
,”
Int. J. Heat Mass Transfer
,
53
(21–22), pp.
4832
4843
.
19.
Shen
,
B.
, and
Zhang
,
P.
,
2011
, “
Thermoacoustic Waves Along the Critical Isochore
,”
Phys. Rev. E
,
83
(
1
), p.
011115
.
20.
Paolucci
,
S.
,
1982
, “
On the Filtering of Sound From the Navier–Stokes Equations
,” Sandia National Laboratories, Technical Report No. SAND 82-8257.
21.
Klainerman
,
S.
, and
Majda
,
A.
,
1982
, “
Compressible and Incompressible Fluids
,”
Commun. Pure Appl. Math.
,
35
(
5
), pp.
629
651
.
22.
Jounet
,
A.
,
Zappoli
,
B.
, and
Mojtabi
,
A.
,
2000
, “
Rapid Thermal Relaxation in Near-Critical Fluids and Critical Speeding Up: Discrepancies Caused by Boundary Effects
,”
Phys. Rev. Lett.
,
84
(
15
), pp.
3224
3227
.
23.
Nikolayev
,
V. S.
,
Dejoan
,
A.
,
Garrabos
,
Y.
, and
Beysens
,
D.
,
2003
, “
Fast Heat Transfer Calculations in Supercritical Fluids Versus Hydrodynamic Approach
,”
Phys. Rev. E
,
67
(061202), p.
061202
.
24.
Teixeira
,
P. C.
, and
de B. Alves
,
L. S.
,
2015
, “
Modeling Supercritical Heat Transfer in Compressible Fluids
,”
Int. J. Therm. Sci.
,
88
, pp.
267
278
.
25.
Cotta
,
R. M.
,
1993
,
Integral Transforms in Computational Heat and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
26.
Turkel
,
E.
,
1993
, “
Review of Preconditioning Methods for Fluid Dynamics
,”
Appl. Numer. Math.
,
12
(1–3), pp.
257
284
.
27.
Turkel
,
E.
,
1999
, “
Preconditioning Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
31
(
1
), pp.
385
416
.
28.
Moler
,
C.
, and
Loan
,
C. V.
,
2003
, “
Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later
,”
SIAM Rev.
,
45
(
1
), pp.
1
46
.
29.
Wolfram
,
S.
,
2003
,
The Mathematica Book
,
5th ed.
,
Wolfram Media/Cambridge University Press
,
London
.
30.
Delache
,
A.
,
Ouarzazi
,
M. N.
, and
Combarnous
,
M.
,
2007
, “
Spatio-Temporal Stability Analysis of Mixed Convection Flows in Porous Media Heated From Below: Comparison With Experiments
,”
Int. J. Heat Mass Transfer
,
50
(7–8), pp.
1485
1499
.
31.
Hirata
,
S. C.
,
Goyeau
,
B.
,
Gobin
,
D.
,
Chandesris
,
M.
, and
Jamet
,
D.
,
2009
, “
Stability of Natural Convection in Superposed Fluid and Porous Layers: Equivalence of the One-and Two-Domain Approaches
,”
Int. J. Heat Mass Transfer
,
52
(1–2), pp.
533
536
.
32.
Barletta
,
A.
, and
Rees
,
D. A. S.
,
2012
, “
Linear Instability of the Darcy–Hadley Flow in an Inclined Porous Layer
,”
Phys. Fluids
,
24
, p.
074104
.
33.
Sphaier
,
L. A.
,
Barletta
,
A.
, and
Celli
,
M.
,
2015
, “
Unstable Mixed Convection in a Heated Inclined Porous Channel
,”
J. Fluid Mech.
,
778
, pp.
428
450
.
34.
Masuda
,
Y.
,
Aizawa
,
T.
,
Kanakubo
,
M.
,
Saito
,
N.
, and
Ikushima
,
Y.
,
2002
, “
One Dimensional Heat Transfer on the Thermal Diffusion and Piston Effect of Supercritical Water
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3673
3677
.
35.
de B. Alves
,
L. S.
,
2013
, “
An Integral Transform Solution for Unsteady Compressible Heat Transfer in Fluids Near Their Thermodynamics Critical Point
,”
Therm. Sci.
,
17
(
3
), pp.
673
686
.
36.
Özisik
,
M. N.
,
1993
,
Heat Conduction
,
2nd ed.
,
Wiley Interscience
,
New York
.
37.
Schlichting
,
H.
,
1986
,
Boundary-Layer Theory
,
7th ed.
,
McGraw-Hill
,
New York
.
38.
Guenoun
,
P.
,
Khalil
,
B.
,
Beysens
,
D.
,
Garrabos
,
Y.
,
Kammoun
,
F.
,
LeNeindre
,
B.
, and
Zappoli
,
B.
,
1993
, “
Thermal Cycle Around the Critical Point of Carbon Dioxide Under Reduced Gravity
,”
Phys. Rev. E
,
47
(
3
), pp.
1531
1545
.
You do not currently have access to this content.