In this paper, an optimization was performed to achieve uniform distribution of convective heat transfer coefficient over a target plate using two impinging slot (air) jets. The objective function is the root mean square error (Erms) of the local Nusselt distribution computed by computational fluid dynamic (CFD) simulations from desired Nusselt numbers. This pattern search minimized this objective function. Design variables are nozzle widths, jet-to-jet distance, jet-to-target plate distance, frequency of pulsations (for pulsating jets), and the flow rate. First, an inverse design is performed for two steady jets for simplicity and the obtained errors for three different desired Nusselt numbers, NuD = 7, 10, and 13, were 20.73%, 20.08%, and 22.92%, respectively. Uniform distribution of heat transfer coefficient for two steady jets was not achieved. Thus, two pulsating jets are considered. The range of design variables for pulsating state is as same as steady-state and heat transfer rates increased about 400% over steady-state due to the effects of pulsations in inlet velocity. Thus, in the pulsating state, optimization must be performed for the desired Nusselt numbers around four-times NuD in the steady-state, i.e., NuD = 28, 40, and 52. The Erms reduced less than 0.01% and distribution of heat transfer coefficient for all cases was uniform. An experimental study using an inverse heat conduction method (conjugate gradient method with adjoint equation) has been performed and the experimental results for the case of NuD = 52 are presented. The estimated distribution of Nusselt number on the target plate with the numerical distribution has around 3.2% relative error with optimal configuration.

References

1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
(
1
), pp.
1
59
.
2.
Roetzel
,
W.
, and
Newman
,
M.
,
1975
, “
Uniform Heat Flux in a Paper Drying Drum With a Non-cylindrical Condensation Surface Operating Under Rimming Conditions
,”
Int. J. Heat Mass Transfer
,
18
(
4
), pp.
553
557
.
3.
Rafidi
,
N.
, and
Wlodzimierz
,
B.
,
2006
, “
Heat Transfer Characteristics of HiTAC Heating Furnace Using Regenerative Burners
,”
Appl. Therm. Eng.
,
26
(
16
), pp.
2027
2034
.
4.
Chandler
,
S.
, and
Ray
,
A.
,
2007
, “
Heat Transfer Characteristics of Three Interacting Methane Air Flame Jets Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,”
50
(
3–4
), pp.
640
653
.
5.
Wadsworth
,
D.
, and
Mudawar
,
I.
,
1990
, “
Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Dielectric Liquid
,”
ASME J. Heat Transfer
,
112
(
4
), pp.
891
898
.
6.
Wang
,
L.
,
Sundén
,
B.
,
Borg
,
A.
, and
Abrahamsson
,
H.
,
2011
, “
Control of Jet Impingement Heat Transfer in Crossflow by Using a Rib
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4157
4166
.
7.
Na-pompet
,
K.
, and
Boonsupthip
,
W.
,
2011
, “
Effect of a Narrow Channel on Heat Transfer Enhancement of a Slot-Jet Impingement System
,”
J. Food Eng.
,
103
(
4
), pp.
366
376
.
8.
San
,
J. Y.
, and
Chen
,
J. J.
,
2014
, “
Effects of Jet-to-Jet Spacing and Jet Height on Heat Transfer Characteristics of an Impinging Jet Array
,”
Int. J. Heat Mass Transfer
,
71
, pp.
8
17
.
9.
Zummbrunnen
,
D. A.
, and
Aziz
,
M.
,
1993
, “
Convective Heat Transfer Enhancement due to Intermittency in an Impinging Jet
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
91
98
.
10.
Sheriff
,
H. S.
, and
Zumbrunnen
,
D. A.
,
1994
, “
Effect of Flow Pulsations on the Cooling Effectiveness of an Impinging Jet
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
886
895
.
11.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
1995
, “
Dependence of Heat Transfer to a Pulsating Stagnation Flow on Pulse Characteristics
,”
J. Thermo Phys. Heat Transfer
,
9
(
2
), pp.
500
514
.
12.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
1995
, “
Nonlinear Dynamics of Laminar Boundary Layers in Pulsatile Stagnation Flows
,”
J. Thermo Phys. Heat Transfer
,
8
, pp.
514
523
.
13.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
1997
, “
Local Convective Heat Transfer to Submerged Pulsating Jets
,”
Int. J. Heat Mass Transfer
,
40
(
14
), pp.
310
320
.
14.
Sailor
,
D. J.
,
Rohli
,
D. J.
, and
Fu
,
Q.
,
1999
, “
Effect of Variable Duty Cycle Flow Pulsations on Heat Transfer Enhancement for an Impinging Air Jet
,”
Int. J. Heat Fluid Flow
,
20
(
6
), pp.
574
580
.
15.
Fallen
,
M.
,
1982
, “
Wärmeübergang im Rohr mit Überlagerter Strömungspulsation
,”
Wärme Stoffübertrag.
,
16
(
2
), pp.
89
99
.
16.
Hofmann
,
H. M.
,
Movileanu
,
D. L.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Influence of a Pulsation on Heat Transfer and Flow Structure in Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3638
3648
.
17.
Persoons
,
T.
,
Kuanysh
,
Balgazin
,
Karl
,
Brown
, and
Darina B.
Murray
,
2013
, “
Scaling of Convective Heat Transfer Enhancement Due to Flow Pulsation in an Axisymmetric Impinging Jet
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111012
.
18.
Hewakandamby
,
B. N.
,
2009
, “
A Numerical Study of Heat Transfer Performance of Oscillatory Impinging Jets
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
396
406
.
19.
Mohammadpour
,
J.
,
Rajabi-Zargarabadi
,
M.
,
Mujumdar
,
A. S.
, and
Ahmadi
,
H.
,
2014
, “
Heat Transfer Under Composite Arrangement of Pulsed and Steady Turbulent Submerged Multiple Jets Impinging on a Flat Surface
,”
Int. J. Therm. Sci.
,
86
(
1
), pp.
139
147
.
20.
Forouzanmehr
,
M.
,
Shariatmadar
,
H.
,
Kowsary
,
F.
, and
Ashjaee
,
M.
,
2015
, “
Acheveing Heat Flux Uniformity Using an Optimal Arrangement of Impinging Jet Arrays
,”
ASME J. Heat Transfer
,
137
(
6
), p.
061002
.
21.
Beck
,
J. V.
,
Blackwell
,
B.
, and
Clair
,
S. R.
,
1988
,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley
,
New York
.
22.
Alifanov
,
O. M.
,
1994
,
Inverse Heat Transfer Problem
,
Springer-Verlag
,
New York
.
23.
Minkowycz
,
W. J.
,
Sparrow
,
E. M.
,
Schneider
,
G. E.
, and
Pletcher
,
R. H.
,
1988
,
Handbook of Numerical Heat Transfer
,
Wiley
,
New York
.
24.
Dowing
,
K. J.
,
Beck
,
J. V.
, and
Blackwell
,
B.
,
1996
, “
Estimation of Direction-Dependent Thermal Properties in a Carbon-Carbon Composite
,”
Int. J. Heat Mass Transfer
,
39
(
15
), pp.
3157
3164
.
25.
Sun
,
K. K.
,
Bup
,
S. J.
,
Hee
,
J. K.
, and
Lee
,
W.
,
2003
, “
Inverse Estimation of Thermo Physical Properties for Anisotropic Composite
,”
Exp. Therm. Fluid Sci.
,
27
, pp.
697
704
.
26.
Hsieh
,
C. K.
, and
Kassab
,
A. J.
,
1986
, “
A General Method for the Solution of Inverse Heat Conduction Problem With Partially Unknown Geometries
,”
Int. J. Heat Mass Transfer
,
29
(
1
), pp.
47
58
.
27.
Lee
,
H. L.
,
Chang
,
W. J.
,
Chen
,
W. L.
, and
Yang
,
Y. C.
,
2007
, “
An Inverse Problem of Estimating the Heat Source in Tapered Optical Fibers for Scanning Near-Field Optical Microscopy
,”
Ultra Microsc.
,
107
(
8
), pp.
656
662
.
28.
Tikhonov
,
N.
, and
Arsenin
,
V. Y.
,
1977
,
Solution of Ill-Posed Problems
,
Winston and Sons
,
Washington, DC
.
29.
Zareifard
,
M. R.
,
Marcotte
,
M.
, and
Dostie
,
M.
,
2006
, “
A Method for Balancing Heat Fluxes Validated for a Newly Designed Pilot Plant Oven
,”
J. Food Eng.
,
76
(
3
), pp.
303
312
.
30.
Sarvari
,
S. H.
, and
Mansouri
,
S.
,
2004
, “
Inverse Design for Radiative Heat Source in Two-Dimensional Participating Media
,”
Numer. Heat Transfer, Part B
,
46
(
3
), pp.
283
300
.
31.
Daun
,
K.
,
Morton
,
D.
, and
Howell
,
J.
,
2003
, “
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
845
851
.
32.
Audet
,
C.
, and
Dennis
,
J. E.
, Jr.
,
2003
, “
Analysis of Generalized Pattern Searches
,”
SIAM J. Optim.
,
13
(
3
), pp.
889
903
.
33.
Farahani
,
S. D.
, and
Kowsary
,
F.
,
2010
, “
Direct Estimation Local Convective Boiling Heat Transfer Coefficient in Mini Channel
,”
Int. Commun. Heat Mass Transfer
,
39
(
2
), pp.
304
310
.
34.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
35.
Chiriac
,
V. A.
, and
Ortega
,
A.
,
2002
, “
A Numerical Study of the Unsteady Flow and Heat Transfer in a Transitional Confined Slot Jet Impinging on an Isothermal Surface
,”
Int. J. Heat Mass Transfer
,
45
(
6
), pp.
1237
1248
.
You do not currently have access to this content.