As an important consideration in the design of plate-fin heat exchangers, the selection of plate-fin surfaces is associated with the estimation of the fin performance in many cases. The fin performance of offset strip fin (OSF) and plain fin is numerically investigated with well-validated 3D models in the present study. The comparative analysis shows that the conventional fin efficiency and fin effectiveness concepts provide an incomplete assessment of the fin performance of the fins, and lead to impractical suggestions of using OSF fin. Further investigation indicates that the idealization of uniform heat transfer coefficient over all the surfaces in fin channel, which runs through the conventional concepts, is untenable, and strongly restricts the fin performance analysis. An actual fin effectiveness is then proposed to measure the fin performance. It physically represents the ratio of the heat flux over the fin surfaces and that over the primary surfaces in the fin channel. With this method, the effects of the geometrical parameters of the OSF are discussed carefully. The results show that there exists a specific fin thickness-to-height ratio α and fin density γ, which contribute to the highest fin performance for a given mass flux, and the optimal γ (or α) increases (or decreases) as mass flux increases. The OSF fins with relatively large fin thickness-to-length ratio δ perform better in low Re region and the optimum δ decreases with the increasing Re number.

References

References
1.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
715
726
.
2.
Gardner
,
K. A.
,
1945
, “
Efficiency of Extended Surface
,”
Trans. ASME
,
67
, pp.
621
631
.
3.
Schmidt
,
T. E.
,
1949
, “
Heat Transfer Calculations for Extended Surfaces
,”
Refrig. Eng.
,
57
, pp.
351
357
.
4.
Hashizume
,
K.
,
Sato
,
T.
,
Matsue
,
T.
, and
Koyama
,
T.
,
2004
, “
Fin Efficiency of Serrated Fins Part 4. Correction Factor for Inline Arrangement
,”
Heat Transfer—Asian Res.
,
33
(
4
), pp.
258
269
.
5.
Hashizume
,
K.
,
Morikawa
,
R.
,
Koyama
,
T.
, and
Matsue
,
T.
,
2002
, “
Fin Efficiency of Serrated Fins
,”
Heat Transfer Eng.
,
23
(
2
), pp.
6
14
.
6.
Hashizume
,
K.
, and
Matsue
,
T.
,
1999
, “
Fin Efficiency of Serrated Fins: Part 1. Analysis of Theoretical Fin Efficiency and Experimental Results
,”
Heat Transfer—Asian Res.
,
28
(
6
), pp.
528
540
.
7.
Wang
,
C. C.
,
Lee
,
C. J.
,
Chang
,
C. T.
, and
Lin
,
S. P.
,
1999
, “
Heat Transfer and Friction Correlation for Compact Louvered Fin-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
1945
1956
.
8.
Tao
,
Y. B.
,
He
,
Y. L.
,
Huang
,
J.
,
Wu
,
Z. G.
, and
Tao
,
W. Q.
,
2007
, “
Numerical Study of Local Heat Transfer Coefficient and Fin Efficiency of Wavy Fin-and-Tube Heat Exchangers
,”
Int. J. Therm. Sci.
,
46
(
8
), pp.
768
778
.
9.
Cortés
,
C.
,
Díez
,
L. I.
, and
Campo
,
A.
,
2008
, “
Efficiency of Composite Fins of Variable Thickness
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2153
2166
.
10.
Song
,
K. W.
,
Wang
,
Y.
,
Zhang
,
Q.
,
Wang
,
L. B.
, and
Liu
,
Y. J.
,
2011
, “
Numerical Study of the Fin Efficiency and a Modified Fin Efficiency Formula for Flat Tube Bank Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2661
2672
.
11.
Prasad
,
B. S. V.
,
1996
, “
Fin Efficiency and Mechanisms of Heat Exchange Through Fins in Multi-Stream Plate-Fin Heat Exchangers: Formulation
,”
Int. J. Heat Mass Transfer
,
39
(
2
), pp.
419
428
.
12.
Manglik
,
R. M.
,
Huzayyin
,
O. A.
, and
Jog
,
M. A.
,
2011
, “
Fin Effects in Flow Channels of Plate-Fin Compact Heat Exchanger Cores
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
041004
.
13.
Huang
,
L. J.
, and
Shah
,
R. K.
,
1992
, “
Assessment of Calculation Methods for Efficiency of Straight Fins of Rectangular Profile
,”
Int. J. Heat Fluid Flow
,
13
(
3
), pp.
282
293
.
14.
Aziz
,
A.
, and
Beers-Green
,
A. B.
,
2009
, “
Performance and Optimum Design of Convective–Radiative Rectangular Fin With Convective Base Heating, Wall Conduction Resistance, and Contact Resistance Between the Wall and the Fin Base
,”
Energy Convers. Manage.
,
50
(
10
), pp.
2622
2631
.
15.
Braga
,
C. V. M.
, and
Saboya
,
F. E. M.
,
1999
, “
Turbulent Heat Transfer, Pressure Drop and Fin Efficiency in Annular Regions With Continuous Longitudinal Rectangular Fins
,”
Exp. Therm. Fluid Sci.
,
20
(
2
), pp.
55
65
.
16.
Mokheimer
,
E. M. A.
,
2002
, “
Performance of Annular Fins With Different Profiles Subject to Variable Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3631
3642
.
17.
Agwu-Nnanna
,
A. G.
,
Haji-Sheikh
,
A.
, and
Agonafer
,
D.
,
2003
, “
Effect of Variable Heat Transfer Coefficient, Fin Geometry, and Curvature on the Thermal Performance of Extended Surfaces
,”
ASME J. Electron. Packag.
,
125
(
3
), pp.
456
460
.
18.
Singla
,
R. K.
, and
Das
,
R.
,
2015
, “
Adomian Decomposition Method for a Stepped Fin With All Temperature-Dependent Modes of Heat Transfer
,”
Int. J. Heat Mass Transfer
,
82
, pp.
447
459
.
19.
Arslanturk
,
C.
,
2005
, “
A Decomposition Method for Fin Efficiency of Convective Straight Fins With Temperature-Dependent Thermal Conductivity
,”
Int. Commun. Heat Mass Transfer
,
32
(
6
), pp.
831
841
.
20.
Torabi
,
M.
, and
Yaghoobi
,
H.
,
2014
, “
Two Dominant Analytical Methods for Thermal Analysis of Convective Step Fin With Variable Thermal Conductivity
,”
Therm. Sci.
,
18
(
2
), pp.
431
442
.
21.
Joneidi
,
A. A.
,
Ganji
,
D. D.
, and
Babaelahi
,
M.
,
2009
, “
Differential Transformation Method to Determine Fin Efficiency of Convective Straight Fins With Temperature Dependent Thermal Conductivity
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
757
762
.
22.
Fouladi
,
F.
,
Hosseinzadeh
,
E.
,
Barari
,
A.
, and
Domairry
,
G.
,
2010
, “
Highly Nonlinear Temperature-Dependent Fin Analysis by Variational Iteration Method
,”
Heat Transfer Res.
,
41
(
2
), pp.
155
165
.
23.
Coşkun
,
S. B.
, and
Atay
,
M. T.
,
2008
, “
Fin Efficiency Analysis of Convective Straight Fins With Temperature Dependent Thermal Conductivity Using Variational Iteration Method
,”
Appl. Therm. Eng.
,
28
(
17–18
), pp.
2345
2352
.
24.
Ganji
,
D. D.
,
Rahimi
,
M.
, and
Rahgoshay
,
M.
,
2012
, “
Determining the Fin Efficiency of Convective Straight Fins With Temperature Dependent Thermal Conductivity by Using Homotopy Perturbation Method
,”
Int. J. Numer. Methods Heat Fluid Flow
,
22
(
2
), pp.
263
272
.
25.
Inc
,
M.
,
2008
, “
Application of Homotopy Analysis Method for Fin Efficiency of Convective Straight Fins With Temperature-Dependent Thermal Conductivity
,”
Math. Comput. Simul.
,
79
(
2
), pp.
189
200
.
26.
Rajabi
,
A.
,
2007
, “
Homotopy Perturbation Method for Fin Efficiency of Convective Straight Fins With Temperature-Dependent Thermal Conductivity
,”
Phys. Lett. A
,
364
(
1
), pp.
33
37
.
27.
Duan
,
J. S.
,
Wang
,
Z.
,
Fu
,
S. Z.
, and
Chaolu
,
T.
,
2013
, “
Parameterized Temperature Distribution and Efficiency of Convective Straight Fin With Temperature-Dependent Thermal Conductivity by a New Modified Decomposition Method
,”
Int. J. Heat Mass Transfer
,
59
, pp.
137
143
.
28.
Peng
,
H.-S.
, and
Chen
,
C.-L.
,
2011
, “
Hybrid Differential Transformation and Finite Difference Method to Annular Fin With Temperature-Dependent Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2427
2433
.
29.
Kulkarni
,
D. B.
, and
Joglekar
,
M. M.
,
2009
, “
Residue Minimization Technique to Analyze the Efficiency of Convective Straight Fins Having Temperature-Dependent Thermal Conductivity
,”
Appl. Math. Comput.
,
215
(
6
), pp.
2184
2191
.
30.
Wang
,
Y.
,
Wang
,
L.-C.
,
Lin
,
Z.-M.
,
Yao
,
Y.-H.
, and
Wang
,
L.-B.
,
2012
, “
The Condition Requiring Conjugate Numerical Method in Study of Heat Transfer Characteristics of Tube Bank Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2353
2364
.
31.
Ameel
,
B.
,
Huisseune
,
H.
,
Degroote
,
J.
,
T'Joen
,
C.
,
Jaeger
,
P. D.
,
Vierendeels
,
J.
, and
Paepe
,
M. D.
,
2013
, “
On Fin Efficiency in Interrupted Fin and Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
60
, pp.
557
566
.
32.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
7th ed.
,
Wiley
,
Hoboken, NJ
.
33.
Kundu
,
B.
, and
Das
,
P. K.
,
2009
, “
Performance and Optimum Design Analysis of Convective Fin Arrays Attached to Flat and Curved Primary Surfaces
,”
Int. J. Refrig.
,
32
(
3
), pp.
430
443
.
34.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
3rd ed.
,
McGraw-Hill
,
New York
.
35.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular OSF Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
171
180
.
36.
Dong
,
J. Q.
,
Chen
,
J. P.
,
Chen
,
Z. J.
, and
Zhou
,
Y. M.
,
2007
, “
Air-Side Thermal Hydraulic Performance of OSF Fin Aluminum Heat Exchangers
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
306
313
.
37.
Yang
,
Y. J.
, and
Li
,
Y. Z.
,
2014
, “
General Prediction of the Thermal Hydraulic Performance for Plate-Fin Heat Exchanger With Offset Strip Fins
,”
Int. J. Heat Mass Transfer
,
78
, pp.
860
870
.
You do not currently have access to this content.