An analytical solution has been obtained for the transient problem of three-dimensional multilayer heat conduction in a sphere with layers in the radial direction. The solution procedure can be applied to a hollow sphere or a solid sphere composed of several layers of various materials. In general, the separation of variables applied to 3D spherical coordinates has unique characteristics due to the presence of associated Legendre functions as the eigenfunctions. Moreover, an eigenvalue problem in the azimuthal direction also requires solution; again, its properties are unique owing to periodicity in the azimuthal direction. Therefore, extending existing solutions in 2D spherical coordinates to 3D spherical coordinates is not straightforward. In a spherical coordinate system, one can solve a 3D transient multilayer heat conduction problem without the presence of imaginary eigenvalues. A 2D cylindrical polar coordinate system is the only other case in which such multidimensional problems can be solved without the use of imaginary eigenvalues. The absence of imaginary eigenvalues renders the solution methodology significantly more useful for practical applications. The methodology described can be used for all the three types of boundary conditions in the outer and inner surfaces of the sphere. The solution procedure is demonstrated on an illustrative problem for which results are obtained.

References

1.
Vodicka
,
V.
,
1955
, “
Eindimensionale Warmeleitung in Geschichteten Koorpern
,”
Math. Nachr.
,
14
(
1
), pp.
47
55
.
2.
Tittle
,
C. W.
,
1965
, “
Boundary Value Problems in Composite Media: Quasi-Orthogonal Functions
,”
J. Appl. Phys.
,
36
(
4
), pp.
1486
1488
.
3.
Bulavin
,
P. E.
, and
Kascheev
,
V. M.
,
1965
, “
Solution of the Non-Homogeneous Heat Conduction Equation for Multilayered Bodies
,”
Int. Chem. Eng.
,
5
(1), pp.
112
115
.
4.
Mulholland
,
G. P.
, and
Cobble
,
M. H.
,
1972
, “
Diffusion Through Composite Media
,”
Int. J. Heat Mass Transfer
,
15
(
1
), pp.
147
160
.
5.
Mikhailov
,
M. D.
,
Ozisik
,
M. N.
, and
Vulchanov
,
N. L.
,
1983
, “
Diffusion in Composite Layers With Automatic Solution of the Eigenvalue Problem
,”
Int. J. Heat Mass Transfer
,
26
(
8
), pp.
1131
1141
.
6.
Huang
,
S. C.
, and
Chang
,
Y. P.
,
1980
, “
Heat Conduction in Unsteady, Periodic and Steady States in Laminated Composites
,”
ASME J. Heat Transfer
,
102
(
4
), pp.
742
748
.
7.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
,
London
.
8.
Haji-Sheikh
,
A.
, and
Beck
,
J. V.
,
1990
, “
Green's Function Partitioning in Galerkin-Base Integral Solution of the Diffusion Equation
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
28
34
.
9.
Salt
,
H.
,
1983
, “
Transient Heat Conduction in a Two-Dimensional Composite Slab—I: Theoretical Development of Temperatures Modes
,”
Int. J. Heat Mass Transfer
,
26
(
11
), pp.
1611
1616
.
10.
Salt
,
H.
,
1983
, “
Transient Heat Conduction in a Two-Dimensional Composite Slab—II: Physical Interpretation of Temperatures Modes
,”
Int. J. Heat Mass Transfer
,
26
(
11
), pp.
1617
1623
.
11.
Mikhailov
,
M. D.
, and
Ozisik
,
M. N.
,
1986
, “
Transient Conduction in a Three-Dimensional Composite Slab
,”
Int. J. Heat Mass Transfer
,
29
(
2
), pp.
340
342
.
12.
Yener
,
Y.
, and
Ozisik
,
M. N.
,
1974
, “
On the Solution of Unsteady Heat Conduction in Multi-Region Finite Media With Time-Dependent Heat Transfer Coefficient
,”
Fifth International Heat Transfer Conference
, JSME, Tokyo, Vol.
1
, pp.
188
192
.
13.
Wolfram Research
,
2005
, “
Mathematica, Version 5.2
,” Wolfram Research, Champaign, IL.
14.
de Monte
,
F.
,
2000
, “
Transient Heat Conduction in One-Dimensional Composite Slab. A ‘Natural’ Analytic Approach
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3607
3619
.
15.
de Monte
,
F.
,
2002
, “
An Analytic Approach to the Unsteady Heat Conduction Processes in One-Dimensional Composite Media
,”
Int. J. Heat Mass Transfer
,
45
(
6
), pp.
1333
1343
.
16.
de Monte
,
F.
,
2003
, “
Unsteady Heat Conduction in Two-Dimensional Two Slab-Shaped Regions. Exact Closed-Form Solution and Results
,”
Int. J. Heat Mass Transfer
,
46
(
8
), pp.
1455
1469
.
17.
de Monte
,
F.
,
2004
, “
Transverse Eigenproblem of Steady-State Heat Conduction for Multi-Dimensional Two-Layered Slabs With Automatic Computation of Eigenvalues
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
191
201
.
18.
Haji-Sheikh
,
A.
, and
Beck
,
J. V.
,
2002
, “
Temperature Solution in Multi-Dimensional Multi-Layer Bodies
,”
Int. J. Heat Mass Transfer
,
45
(
9
), pp.
1865
1877
.
19.
Lu
,
X.
,
Tervola
,
P.
, and
Viljanen
,
M.
,
2005
, “
A New Analytical Method to Solve Heat Equation for Multi-Dimensional Composite Slab
,”
J. Phys. A: Math. Gen.
,
38
(
13
), pp.
2873
2890
.
20.
Lu
,
X.
,
Tervola
,
P.
, and
Viljanen
,
M.
,
2006
, “
Transient Analytical Solution to Heat Conduction in Multi-Dimensional Composite Cylinder Slab
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
1107
1114
.
21.
Singh
,
S.
,
Jain
,
P. K.
, and
Rizwan-Uddin.
,
2008
, “
Analytical Solution to Transient Heat Conduction in Polar Coordinates With Multiple Layers in Radial Direction
,”
Int. J. Therm. Sci.
,
47
(
3
), pp.
261
273
.
22.
Jain
,
P. K.
,
Singh
,
S.
, and
Rizwan-Uddin
,
2009
, “
Transient Analytical Solution to Asymmetric Heat Conduction in a Multilayer Annulus
,”
ASME J. Heat Transfer
,
131
(
1
), p.
011304
.
23.
Singh
,
S.
,
Jain
,
P. K.
, and
Rizwan-Uddin
,
2011
, “
Finite Integral Transform Technique to Solve Asymmetric Heat Conduction in a Multilayer Annulus With Time Dependent Boundary Conditions
,”
Nucl. Eng. Des.
,
241
(
1
), pp.
144
154
.
24.
Jain
,
P. K.
,
Singh
,
S.
, and
Rizwan-Uddin
,
2006
, “
An Exact Analytical Solution for Two-Dimensional, Unsteady, Multilayer Heat Conduction in Spherical Coordinates
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
2133
2142
.
25.
Ozisik
,
M. N.
,
1993
,
Heat Conduction
,
Wiley
,
New York
.
26.
Byerly
,
W. E.
,
1893
,
An Elementary Treatise in Fourier's Series and Spherical Cylindrical and Ellipsoidal Harmonics With Applications to Problems in Mathematical Physics
,
Ginn & Company
,
New York
.
27.
Antonopoulos
,
K. A.
, and
Tzivanidis
,
C.
,
1996
, “
Analytical Solution of Boundary Value Problems of Heat Conduction in Composite Regions With Arbitrary Convection Boundary Conditions
,”
Acta Mech.
,
118
(
1
), pp.
65
78
.
You do not currently have access to this content.